33 research outputs found

    Characterizing information leaders in Twitter during COVID-19 crisis

    Full text link
    Information is key during a crisis such as the current COVID-19 pandemic as it greatly shapes people opinion, behaviour and even their psychological state. It has been acknowledged from the Secretary-General of the United Nations that the infodemic of misinformation is an important secondary crisis produced by the pandemic. Infodemics can amplify the real negative consequences of the pandemic in different dimensions: social, economic and even sanitary. For instance, infodemics can lead to hatred between population groups that fragment the society influencing its response or result in negative habits that help the pandemic propagate. On the contrary, reliable and trustful information along with messages of hope and solidarity can be used to control the pandemic, build safety nets and help promote resilience and antifragility. We propose a framework to characterize leaders in Twitter based on the analysis of the social graph derived from the activity in this social network. Centrality metrics are used to identify relevant nodes that are further characterized in terms of users parameters managed by Twitter. We then assess the resulting topology of clusters of leaders. Although this tool may be used for surveillance of individuals, we propose it as the basis for a constructive application to empower users with a positive influence in the collective behaviour of the network and the propagation of information

    Digital Epidemiology: A review

    Full text link
    The epidemiology has recently witnessed great advances based on computational models. Its scope and impact are getting wider thanks to the new data sources feeding analytical frameworks and models. Besides traditional variables considered in epidemiology, large-scale social patterns can be now integrated in real time with multi-source data bridging the gap between different scales. In a hyper-connected world, models and analysis of interactions and social behaviors are key to understand and stop outbreaks. Big Data along with apps are enabling for validating and refining models with real world data at scale, as well as new applications and frameworks to map and track diseases in real time or optimize the necessary resources and interventions such as testing and vaccination strategies. Digital epidemiology is positioning as a discipline necessary to control epidemics and implement actionable protocols and policies. In this review we address the research areas configuring current digital epidemiology: transmission and propagation models and descriptions based on human networks and contact tracing, mobility analysis and spatio-temporal propagation of infectious diseases and the emerging field of infodemics that comprises the study of information and knowledge propagation related to epidemics. Digital epidemiology has the potential to create new operational mechanisms for prevention and mitigation, monitoring of the evolution of epidemics, assessing their impact and evaluating the pharmaceutical and non-pharmaceutical measures to fight the outbreaks.Comment: in Spanis

    Spatio-temporal filtering with morphological operators for robust cell migration estimation in "in-vivo" images

    Get PDF
    The understanding of the embryogenesis in living systems requires reliable quantitative analysis of the cell migration throughout all the stages of development. This is a major challenge of the "in-toto" reconstruction based on different modalities of "in-vivo" imaging techniques -spatio-temporal resolution and image artifacts and noise. Several methods for cell tracking are available, but expensive manual interaction -time and human resources- is always required to enforce coherence. Because of this limitation it is necessary to restrict the experiments or assume an uncontrolled error rate. Is it possible to obtain automated reliable measurements of migration? can we provide a seed for biologists to complete cell lineages efficiently? We propose a filtering technique that considers trajectories as spatio-temporal connected structures that prunes out those that might introduce noise and false positives by using multi-dimensional morphological operators

    Flooding through the lens of mobile phone activity

    Get PDF
    Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.Comment: Submitted to IEEE Global Humanitarian Technologies Conference (GHTC) 201
    corecore