2 research outputs found

    Pinning down electron correlations in RaF via spectroscopy of excited states

    No full text
    International audienceWe report the spectroscopy of 11 electronic states in the radioactive molecule radium monofluoride (RaF). The observed excitation energies are compared with state-of-the-art relativistic Fock-space coupled cluster (FS-RCC) calculations, which achieve an agreement of >99.71% (within ~8 meV) for all states. High-order electron correlation and quantum electrodynamics corrections are found to be important at all energies. Establishing the accuracy of calculations is an important step towards high-precision studies of these molecules, which are proposed for sensitive searches of physics beyond the Standard Model

    Pinning down electron correlations in RaF via spectroscopy of excited states

    No full text
    We report the spectroscopy of 11 electronic states in the radioactive molecule radium monofluoride (RaF). The observed excitation energies are compared with state-of-the-art relativistic Fock-space coupled cluster (FS-RCC) calculations, which achieve an agreement of >99.71% (within ~8 meV) for all states. High-order electron correlation and quantum electrodynamics corrections are found to be important at all energies. Establishing the accuracy of calculations is an important step towards high-precision studies of these molecules, which are proposed for sensitive searches of physics beyond the Standard Model
    corecore