1,909 research outputs found

    Cosmology in the Universe with distance dependent Lorentz-violating bakground

    Full text link
    We consider a cosmological setup with the inflaton field in the presence of a redshift dependent Lorentz-violating time-like background to address the inflationary regime and other phases of the Universe. We also show that the regime of dark energy at large distances (low redshifts) is essentially dominated by the presence of the Lorentz-violating background.Comment: 8 pages, no figure, Latex, to appear in AHE

    On the dual equivalence between self-dual and Maxwell-Chern-Simons models with Lorentz symmetry breaking

    Full text link
    In this paper, we use gauge embedding procedure and master action approach to establish the equivalence between the self-dual and Maxwell-Chern-Simons models with Lorentz symmetry breaking. As a result, new kinds of Lorentz-breaking terms arise.Comment: 14 pages, minor corrections, version accepted to Physical Review

    Surface tension driven flow of blood in a rectangular microfluidic channel: Effect of erythrocyte aggregation

    Get PDF
    Microfluidic platforms have increasingly been explored for in vitro blood diagnostics and for studying complex microvascular processes. The perfusion of blood in such devices is typically achieved through pressure driven set-ups. Surface tension driven blood flow provides an alternative flow delivery option, and various studies in the literature have examined the behaviour of blood flow in such fluidic devices. In such flows, the influence of red blood cell (RBC) aggregation, the phenomenon majorly responsible for the non-Newtonian nature of blood, requires particular attention. In the present work, we examine differences in the surface tension driven flow of aggregating, non-aggregating RBC, and Newtonian suspensions, in a rectangular micro channel. The velocity fields were obtained using microPIV techniques. The analytical solution for blood velocity in the channel is developed utilising the power law model for blood viscosity. The results showed that RBC aggregation has an impact at the late stages of the flow, observed mainly in the bluntness of the velocity profiles. At the initial stages of the flow the shearing conditions are found moderately elevated, preventing intense RBC aggregate formation. As the flow decelerates in the channel RBC aggregation increases, affecting the flow characteristics
    • …
    corecore