2 research outputs found

    Dynamic weakening and amorphization in serpentinite during laboratory earthquakes

    Get PDF
    The mechanical properties of serpentinites are key factors in our understanding of the dynamics of earthquake ruptures in subduction zones, especially intermediate-depth earthquakes. Here, we performed shear rupture experiments on natural antigorite serpentinite, which showed that friction reaches near-zero values during spontaneous dynamic rupture propagation. Rapid coseismic slip (>1 m/s), although it occurs over short distances (<1 mm), induces significant overheating of microscale asperities along the sliding surface, sufficient to produce surface amorphization and likely some melting. Antigorite dehydration occurs in the fault walls, which leaves a partially amorphized material. The water generated potentially contributes to the production of a low-viscosity pressurized melt, explaining the near-zero dynamic friction levels observed in some events. The rapid and dramatic dynamic weakening in serpentinite might be a key process facilitating the propagation of earthquakes at intermediate depths in subduction zones
    corecore