17 research outputs found

    Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11

    No full text
    The acquisition of a specific cell fate is one of the core aims of tissue engineering and regenerative medicine. Significant evidence shows that aggregate cultures have a positive influence on cell fate decisions, presumably through cell-cell interactions, but little is known about the specific mechanisms. To investigate the difference between cells cultured as a monolayer and as aggregates, we started by looking at cadherin expression, an important protein involved in cell adhesion, during the differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in aggregate and monolayer cultures. We observed that proliferating hMSCs in monolayer culture expressed lower levels of cadherin-2 and increased cadherin-11 expression at cell-cell contact sites over time, which was not evident in the aggregate cultures. By knocking down cadherin-2 and cadherin-11, we found that both cadherins were required for adipogenic differentiation in a monolayer as well as aggregate culture. However, during osteogenic differentiation, low levels of cadherin-2 were found to be favorable for cells cultured as a monolayer and as aggregates, whereas cadherin- 11 was dispensable for cells cultured as aggregates. Together, these results provide compelling evidence for the important role that cadherins play in regulating the differentiation of hMSCs and how this is affected by the dimensionality of cell culture

    Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D

    Get PDF
    Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation. We employed modular mixing of two synthetic benzene-1,3,5-tricarboxamide (BTA) architectures: a small molecule water-soluble BTA with slow exchange dynamics and a telechelic polymeric BTA-PEG-BTA with fast exchange dynamics. Copolymerisation of these two supramolecular architectures was observed, and all tested formulations formed stable hydrogels in water and cell culture media. We found that rational tuning of mechanical and viscoelastic properties is possible by mixing BTA with BTA-PEG-BTA. These hydrogels showed high viability for both chondrocyte (ATDC5) and human dermal fibroblast (HDF) encapsulation (>80%) and supported neuronal outgrowth (PC12 and dorsal root ganglion, DRG). Furthermore, ATDC5s and human mesenchymal stem cells (hMSCs) were able to form spheroids within these viscoelastic hydrogels, with control over cell aggregation modulated by the dynamic properties of the material. Overall, this study shows that modular mixing of supramolecular architectures enables tunable fibrous hydrogels, creating a biomimetic environment for cell encapsulation. These materials are suitable for the formation and culture of spheroids in 3D, critical for upscaling tissue engineering approaches towards cell densities relevant for physiological tissues
    corecore