3 research outputs found

    Brain anatomy in Diplura (Hexapoda)

    No full text
    Background: In the past decade neuroanatomy has proved to be a valuable source of character systems that provide insights into arthropod relationships. Since the most detailed description of dipluran brain anatomy dates back to Hanström (1940) we re-investigated the brains of Campodea augens and Catajapyx aquilonaris with modern neuroanatomical techniques. The analyses are based on antibody staining and 3D reconstruction of the major neuropils and tracts from semi-thin section series. Results: Remarkable features of the investigated dipluran brains are a large central body, which is organized in nine columns and three layers, and well developed mushroom bodies with calyces receiving input from spheroidal olfactory glomeruli in the deutocerebrum. Antibody staining against a catalytic subunit of protein kinase A (DC0) was used to further characterize the mushroom bodies. The japygid Catajapyx aquilonaris possesses mushroom bodies which are connected across the midline, a unique condition within hexapods. Conclusions: Mushroom body and central body structure shows a high correspondence between japygids and campodeids. Some unique features indicate that neuroanatomy further supports the monophyly of Diplura. In a broader phylogenetic context, however, the polarization of brain characters becomes ambiguous. The mushroom bodies and the central body of Diplura in several aspects resemble those of Dicondylia, suggesting homology. In contrast, Archaeognatha completely lack mushroom bodies and exhibit a central body organization reminiscent of certain malacostracan crustaceans. Several hypotheses of brain evolution at the base of the hexapod tree are discussed.© Böhm et al

    A new kind of auxiliary heart in insects: functional morphology and neuronal control of the accessory pulsatile organs of the cricket ovipositor

    No full text
    Introduction: In insects, the pumping of the dorsal heart causes circulation of hemolymph throughout the central body cavity, but not within the interior of long body appendages. Hemolymph exchange in these dead-end structures is accomplished by special flow-guiding structures and/or autonomous pulsatile organs (“auxiliary hearts”). In this paper accessory pulsatile organs for an insect ovipositor are described for the first time. We studied these organs in females of the cricket Acheta domesticus by analyzing their functional morphology, neuroanatomy and physiological control. Results: The lumen of the four long ovipositor valves is subdivided by longitudinal septa of connective tissue into efferent and afferent hemolymph sinuses which are confluent distally. The countercurrent flow in these sinuses is effected by pulsatile organs which are located at the bases of the ovipositor valves. Each of the four organs consists of a pumping chamber which is compressed by rhythmically contracting muscles. The morphology of the paired organs is laterally mirrored, and there are differences in some details between the dorsal and ventral organs. The compression of the pumping chambers of each valve pair occurs with a left-right alternating rhythm with a frequency of 0.2 to 0.5 Hz and is synchronized between the dorsal and ventral organs. The more anteriorly located genital chamber shows rhythmical lateral movements simultaneous to those of the ovipositor pulsatile organs and probably supports the hemolymph exchange in the abdominal apex region. The left-right alternating rhythm is produced by a central pattern generator located in the terminal ganglion. It requires no sensory feedback for its output since it persists in the completely isolated ganglion. Rhythm-modulating and rhythm-resetting interneurons are identified in the terminal ganglion. Conclusion: The circulatory organs of the cricket ovipositor have a unique functional morphology. The pumping apparatus at the base of each ovipositor valve operates like a bellow. It forces hemolymph via sinuses delimited by thin septa of connective tissue in a countercurrent flow through the valve lumen. The pumping activity is based on neurogenic control by a central pattern generator in the terminal ganglion

    Morphological and Genetic Analysis of the Acerentomon doderoi Group (Protura: Acerentomidae) with Description of A. christiani sp. nov

    No full text
    Acerentomon christiani sp. nov. is described from Vienna, Austria. The new species is a member of the “doderoi” group, characterized by the presence of seta x on tergite VII. It is most similar to A. gallicum, A. brevisetosum and A. tenuisetosum, but differs from these species in the length of foretarsal sensillum c and certain other chaetotaxic measurements and indices. In addition to the morphological description, the DNA barcoding region of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) and the 28S ribosomal RNA of the new species are provided. The morphological characters and the barcode of the new species are discussed in comparison to those of other Acerentomon species. An identification key to all known Acerentomon spp. of the “doderoi” group is given
    corecore