47 research outputs found

    Taking apart the dynamical clock. Fat-tailed dynamical kicks shape the blue-straggler star bimodality

    Full text link
    In globular clusters, blue straggler stars are heavier than the average star, so dynamical friction strongly affects them. The radial distribution of BSS, normalized to a reference population, appears bimodal in a fraction of Galactic GCs, with a density peak in the core, a prominent zone of avoidance at intermediate radii, and again higher density in the outskirts. The zone of avoidance appears to be located at larger radii the more relaxed the host cluster, acting as a sort of dynamical clock. We use a new method to compute the evolution of the BSS radial distribution under dynamical friction and diffusion. We evolve our BSS in the mean cluster potential under dynamical friction plus a random fluctuating force, solving the Langevin equation with the Mannella quasi symplectic scheme. This amounts to a new simulation method which is much faster and simpler than direct N-body codes but retains their main feature: diffusion powered by strong, if infrequent, kicks. We compute the radial distribution of initially unsegregated BSS normalized to a reference population as a function of time. We trace the evolution of its minimum, corresponding to the zone of avoidance. We compare the evolution under kicks extracted from a Gaussian distribution to that obtained using a Holtsmark distribution. The latter is a fat tailed distribution which correctly models the effects of close gravitational encounters. We find that the zone of avoidance moves outwards over time, as expected based on observations, only when using the Holtsmark distribution. Thus the correct representation of near encounters is crucial to reproduce the dynamics of the system. We confirm and extend earlier results that showed how the dynamical clock indicator depends both on dynamical friction and effective diffusion powered by dynamical encounters.Comment: 8 pages, 6 figures. Version accepted in Astronomy & Astrophysic

    Weighing the IMBH candidate CO-0.40-0.22* in the Galactic Centre

    Full text link
    The high velocity gradient observed in the compact cloud CO-0.40-0.22, at a projected distance of 60 pc from the centre of the Milky Way, has led its discoverers to identify the closeby mm continuum emitter, CO-0.40-0.22*, with an intermediate mass black hole (IMBH) candidate. We describe the interaction between CO-0.40-0.22 and the IMBH, by means of a simple analytical model and of hydrodynamical simulations. Through such calculation, we obtain a lower limit to the mass of CO-0.40-0.22* of few 104×  M⊙10^4 \times \; M_{\odot}. This result tends to exclude the formation of such massive black hole in the proximity of the Galactic Centre. On the other hand, CO-0.40-0.22* might have been brought to such distances in cosmological timescales, if it was born in a dark matter halo or globular cluster around the Milky Way.Comment: 9 pages, 4 figures. To be published on MNRA

    Finding Black Holes with Black Boxes -- Using Machine Learning to Identify Globular Clusters with Black Hole Subsystems

    Full text link
    Machine learning is a powerful technique, becoming increasingly popular in astrophysics. In this paper, we apply machine learning to more than a thousand globular cluster (GC) models simulated as part of the 'MOCCA-Survey Database I' project in order to correlate present-day observable properties with the presence of a subsystem of stellar mass black holes (BHs). The machine learning model is then applied to available observed parameters for Galactic GCs to identify which of them that are most likely to be hosting a sizeable number of BHs and reveal insights into what properties lead to the formation of BH subsystems. With our machine learning model, we were able to shortlist 21 Galactic GCs that are most likely to contain a BH subsystem. We show that the clusters shortlisted by the machine learning classifier include those in which BH candidates have been observed (M22, M10 and NGC 3201) and that our results line up well with independent simulations and previous studies that manually compared simulated GC models with observed properties of Galactic GCs. These results can be useful for observers searching for elusive stellar mass BH candidates in GCs and further our understanding of the role BHs play in GC evolution. In addition, we have released an online tool that allows one to get predictions from our model after they input observable properties.Comment: 20 pages, 9 figures, 7 tables. Accepted for publication in MNRAS. Source code available at https://github.com/ammaraskar/black-holes-black-boxe
    corecore