5 research outputs found
Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution dexamethasone concentrations: a dose-response study
There is increasing evidence that the abdominal obesity phenotype may be associated with multiple alterations of the hypothalamic-pituitary-adrenocortical (HPA) axis activity in both sexes. Our hypothesis is that the lack of adequate cortisol suppression after the dexamethasone test may constitute an indirect marker of HPA axis hyperactivity in the presence of the abdominal obesity phenotype. A total of 34 normal-weight (13 men and 21 women) and 87 obese (36 men and 51 women), healthy, nondepressed subjects therefore underwent four different dexamethasone suppression tests randomly performed at varying intervals of at least 1 wk between each test. After a standard overnight 1-mg dexamethasone test, which served as a reference, three other tests were randomly performed at 1-wk intervals by administering 0.0035, 0.0070, and 0.015 mg oral dexamethasone per kilogram of body weight overnight. Blood samples were obtained for cortisol, ACTH, and dexamethasone. Results were analyzed separately in men and women as well as in normal-weight [body mass index (BMI) 25 kg/m(2)) subjects. The waist circumference and the waist to hip ratio (WHR) were used as markers of body fat distribution. After the standard 1-mg test, cortisol suppression was greater than 90% in all subjects. However, after each test, obese women had significantly higher values of percent cortisol and percent ACTH suppression than normal-weight women without any difference between obese and normal-weight men. Considering the response to the three variable-dose tests, a clear dose- response pattern (P < 0.001 for trend analysis) in percent cortisol and percent ACTH suppression was found in all subjects. After each test men had significantly higher dexamethasone levels than women, regardless of BMI. However, obese women, but not men, had significantly higher dexamethasone levels after each test than their normal-weight counterpart. Plasma dexamethasone concentrations were dose related (P < 0.001 for trend analysis) in all subjects, but the dose-related increase was significantly higher in normal-weight men than normal-weight women, whereas it was similar in obese subjects of both sexes. Stepwise multiple regression analysis revealed that both percent cortisol and percent ACTH variations were significantly and negatively influenced by dexamethasone levels, as well as by waist circumference values in men, and independently by BMI and waist circumference in women. However, in contrast to what has been found in men, a divergent contribution of BMI and waist circumference was found in women indicating that, with increasing waist values, a smaller suppression of the HPA axis was found with respect to that expected on the basis of BMI values. In conclusion, this study provides data of both physiological and physiopathological relevance. Overall, our data indicated that adjustment of the dexamethasone dose to body weight does not seem to substantially improve the sensitivity of the test, even in obese individuals, particularly when near-maximal doses are administered. However, this study demonstrated a highly significant effect of dexamethasone blood level concentrations on cortisol and ACTH suppression to low-dose dexamethasone tests. In addition, a significant effect of gender on postdexamethasone cortisol concentrations, suppression of the HPA axis, and dexamethasone levels were found, which may be dependent on related differences in both cortisol and dexamethasone metabolism. We showed that pituitary sensitivity to feedback inhibition by dexamethasone is preserved in obesity in both sexes even at low dosages. On the other hand, our data suggest that, at least in women, abdominal fat distribution may partially counteract the progressively greater suppressibility of the HPA axis that would be expected according to increasing BMI
Cortisol and ACTH response to dexamethasone in obesity and effects of sex, body fat distribution and dexmethasone concentrations: a dose-response study
There is increasing evidence that the abdominal obesity phenotype may be associated with multiple alterations of the hypothalamic-pituitary-adrenocortical (HPA) axis activity in both sexes. Our hypothesis is that the lack of adequate cortisol suppression after the dexamethasone test may constitute an indirect marker of HPA axis hyperactivity in the presence of the abdominal obesity phenotype. A total of 34 normal-weight (13 men and 21 women) and 87 obese (36 men and 51 women), healthy, nondepressed subjects therefore underwent four different dexamethasone suppression tests randomly performed at varying intervals of at least 1 wk between each test. After a standard overnight 1-mg dexamethasone test, which served as a reference, three other tests were randomly performed at 1-wk intervals by administering 0.0035, 0.0070, and 0.015 mg oral dexamethasone per kilogram of body weight overnight. Blood samples were obtained for cortisol, ACTH, and dexamethasone. Results were analyzed separately in men and women as well as in normal-weight [body mass index (BMI) 25 kg/m(2)) subjects. The waist circumference and the waist to hip ratio (WHR) were used as markers of body fat distribution. After the standard 1-mg test, cortisol suppression was greater than 90% in all subjects. However, after each test, obese women had significantly higher values of percent cortisol and percent ACTH suppression than normal-weight women without any difference between obese and normal-weight men. Considering the response to the three variable-dose tests, a clear dose- response pattern (P < 0.001 for trend analysis) in percent cortisol and percent ACTH suppression was found in all subjects. After each test men had significantly higher dexamethasone levels than women, regardless of BMI. However, obese women, but not men, had significantly higher dexamethasone levels after each test than their normal-weight counterpart. Plasma dexamethasone concentrations were dose related (P < 0.001 for trend analysis) in all subjects, but the dose-related increase was significantly higher in normal-weight men than normal-weight women, whereas it was similar in obese subjects of both sexes. Stepwise multiple regression analysis revealed that both percent cortisol and percent ACTH variations were significantly and negatively influenced by dexamethasone levels, as well as by waist circumference values in men, and independently by BMI and waist circumference in women. However, in contrast to what has been found in men, a divergent contribution of BMI and waist circumference was found in women indicating that, with increasing waist values, a smaller suppression of the HPA axis was found with respect to that expected on the basis of BMI values. In conclusion, this study provides data of both physiological and physiopathological relevance. Overall, our data indicated that adjustment of the dexamethasone dose to body weight does not seem to substantially improve the sensitivity of the test, even in obese individuals, particularly when near-maximal doses are administered. However, this study demonstrated a highly significant effect of dexamethasone blood level concentrations on cortisol and ACTH suppression to low-dose dexamethasone tests. In addition, a significant effect of gender on postdexamethasone cortisol concentrations, suppression of the HPA axis, and dexamethasone levels were found, which may be dependent on related differences in both cortisol and dexamethasone metabolism. We showed that pituitary sensitivity to feedback inhibition by dexamethasone is preserved in obesity in both sexes even at low dosages. On the other hand, our data suggest that, at least in women, abdominal fat distribution may partially counteract the progressively greater suppressibility of the HPA axis that would be expected according to increasing BMI
Daily and nightly urinary free cortisol ratio as a marker of the hypothalamic-pituitary-adrenal (HPA) axis activity in abdominal obesity
Abdominal obesity (AO) might have a hyperactivation of the HPA axis but previous studies are limited by the small and heterogeneous number of patients investigated. The aim of this study was to evaluate urinary free cortisol (UFC) output during daily and nightly hours in a large cohort of AO women versus normal weight controls (CT). 107 AO women and 37 CT women were enrolled in this study; all subjects underwent a complete physical examination, an OGTT and biochemical determinations. Moreover, each subject collected daily (from 0800 am to 0800 pm, dUFC) and nightly (from 0800 pm to 0800 am of the day after, nUFC) urine for UFC determinations.
Total cholesterol and triglycerides levels were significantly higher in the AO, whilst HDL were significantly lower than in CT. AO had significantly higher HOMA index than CT. There were no differences neither in dUFC nor in the nUFC between the groups but on the contrary, AO had significantly lower dUFC/nUFC ratio than CT. There was a negative and significant correlation between dUFC/nUFC and waist and BMI in all subjects. In the AO group, the correlation between dUFC/nUFC and anthropometric variables was still present, moreover, the ratio was also positively correlated to HOMA index.
In order to assess the linkage between HPA axis activity and metabolic syndrome, a multiple regression was performed in AO. dUFC/nUFC was still negatively and significantly correlated to BMI, while the correlation with waist circumference was lost. Interestingly, dUFC/nUFC was still positively and significantly correlated to HOMA index and systolic blood pressure. On the contrary, a negative and significant correlation was found between dUFC/nUFC and both HDL and diastolic blood pressure.
In conclusion, obesity by itself is characterized by high nightly UFC excretion. The HPA axis dysregulation is strictly associated to the abnormalities of the metabolic syndrome