6 research outputs found

    Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8

    Full text link
    BACKGROUND: Bluetongue disease, caused by bluetongue virus serotype 8 (BTV-8), appeared for the first time in the northern part of Europe in 2006, and subsequently rapidly spread causing severe economic losses to the farming industry. The implicated vectors of BTV in Europe are Culicoides species within the subgenus Avaritia (C. chiopterus, C. dewulfi, C. obsoletus and C. scoticus). Epidemiological data from Switzerland have shown that BTV, whose spread was eliminated at an early stage by vaccination campaigns, had not been circulating among livestock at higher altitudes where other species dominate the Culicoides fauna. In this study, we investigated the extent that Culicoides spp. prevailing at higher altitudes (mainly C. grisescens) can act as vectors for BTV. METHODS: Culicoides were collected at farms in the pre-alpine region (two sites at 1550 m above sea level, masl, referred to as pre-alpine I; one site at 2030 masl, pre-alpine II) and, for comparative purposes, from the Swiss Plateau (one site, 650 masl). They were fed on bovine blood/BTV suspensions (BTV-1, 4 or 8) and incubated for eight days under a fluctuating temperature regime (13-25 °C, mean 19 °C), reflecting a mid-summer warm spell in the pre-alpine region. Susceptibility to BTV transmission was assessed from head homogenates by RT-qPCR and virus isolation. RESULTS: Overall, 9196 female Culicoides were exposed to the three BTV strains through an artificial membrane, with feeding rates of 14-27%. Survival rates of blood-engorged Culicoides females at eight days post-infection depended on both virus serotype and altitude of origin. Virus dissemination (Cq ≤ the cut-off value as determined by serial virus dilutions) was confirmed only for BTV-1 in C. scoticus (dissemination efficiency 22.5%; 9/40) and C. obsoletus (5.6%; 1/18) from the Swiss Plateau area. There was no strong evidence of susceptibility to infection for Culicoides from the pre-alpine area when fed with all BTV strains (BTV-1, 4 and 8). CONCLUSIONS: This study confirms the susceptibility of C. scoticus and C. obsoletus to BTV-1 infection, including under cooler temperatures. Culicoides grisescens, which is highly abundant at higher altitudes, cannot be considered a potential vector under these temperature conditions

    Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime

    Get PDF
    BACKGROUND: Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS: The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics

    Vector competence of pre-alpine Culicoides (Diptera: Ceratopogonidae) for bluetongue virus serotypes 1, 4 and 8

    No full text
    Abstract Background Bluetongue disease, caused by bluetongue virus serotype 8 (BTV-8), appeared for the first time in the northern part of Europe in 2006, and subsequently rapidly spread causing severe economic losses to the farming industry. The implicated vectors of BTV in Europe are Culicoides species within the subgenus Avaritia (C. chiopterus, C. dewulfi, C. obsoletus and C. scoticus). Epidemiological data from Switzerland have shown that BTV, whose spread was eliminated at an early stage by vaccination campaigns, had not been circulating among livestock at higher altitudes where other species dominate the Culicoides fauna. In this study, we investigated the extent that Culicoides spp. prevailing at higher altitudes (mainly C. grisescens) can act as vectors for BTV. Methods Culicoides were collected at farms in the pre-alpine region (two sites at 1550 m above sea level, masl, referred to as pre-alpine I; one site at 2030 masl, pre-alpine II) and, for comparative purposes, from the Swiss Plateau (one site, 650 masl). They were fed on bovine blood/BTV suspensions (BTV-1, 4 or 8) and incubated for eight days under a fluctuating temperature regime (13–25 °C, mean 19 °C), reflecting a mid-summer warm spell in the pre-alpine region. Susceptibility to BTV transmission was assessed from head homogenates by RT-qPCR and virus isolation. Results Overall, 9196 female Culicoides were exposed to the three BTV strains through an artificial membrane, with feeding rates of 14–27%. Survival rates of blood-engorged Culicoides females at eight days post-infection depended on both virus serotype and altitude of origin. Virus dissemination (Cq ≤ the cut-off value as determined by serial virus dilutions) was confirmed only for BTV-1 in C. scoticus (dissemination efficiency 22.5%; 9/40) and C. obsoletus (5.6%; 1/18) from the Swiss Plateau area. There was no strong evidence of susceptibility to infection for Culicoides from the pre-alpine area when fed with all BTV strains (BTV-1, 4 and 8). Conclusions This study confirms the susceptibility of C. scoticus and C. obsoletus to BTV-1 infection, including under cooler temperatures. Culicoides grisescens, which is highly abundant at higher altitudes, cannot be considered a potential vector under these temperature conditions
    corecore