157 research outputs found
Two mixed-ligand lanthanide–hydrazone complexes : [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzohydrazide, C13H11N3O]
We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections.Peer reviewedPublisher PD
The influence of age on tooth supported fixed prosthetic restoration longevity. A systematic review
OBJECTIVE: The purpose of this study was to investigate the possible influence of age on the longevity of tooth supported fixed prosthetic restorations, using a systematic review process. DATA SOURCES: To identify relevant papers an electronic search was made using various databases (MEDLINE via Pubmed, EMBASE, The Cochrane Register of RCTs, the database of abstracts of Reviews of Effects-DARE), augmented by hand searching of key prosthodontic journals (International Journal of Prosthodontics, Journal of Prosthetic Dentistry and Journal of Prosthodontics) and reference cross-check. STUDY SELECTION: Assessment and selection of studies identified were conducted in a two phase procedure, by two independent reviewers utilizing specific inclusion and exclusion criteria. The minimum mean follow-up time was set at 5 years. RESULTS: The initial database search yielded 513 relevant titles. After the subsequent filtering process, 22 articles were selected for full-text analysis, finally resulting in 11 studies that met the inclusion criteria. All studies were classified as category C according to the strength of evidence. Meta-analysis was not possible due to the non-uniformity of the data available. The final studies were presented with conflicting results. The majority of the final studies did not report a statistically significant effect of age on fixed prostheses survival, whilst only one study reported poorer prognosis for elderly patients, and two studies reported poorer prognosis for middle-aged patients. CONCLUSIONS: The results of this systematic review showed that increased age of patients should not be considered as a risk factor for the survival of fixed prostheses. Although the majority of studies did not show any effect of age on the survival of fixed prostheses, there was some evidence that middle-aged patients may present with higher failure rates
Importance of cooling in triggering the collapse of hypermassive neutron stars
The inspiral and merger of a binary neutron star (NSNS) can lead to the
formation of a hypermassive neutron star (HMNS). As the HMNS loses thermal
pressure due to neutrino cooling and/or centrifugal support due to
gravitational wave (GW) emission, and/or magnetic breaking of differential
rotation it will collapse to a black hole. To assess the importance of
shock-induced thermal pressure and cooling, we adopt an idealized equation of
state and perform NSNS simulations in full GR through late inspiral, merger,
and HMNS formation, accounting for cooling. We show that thermal pressure
contributes significantly to the support of the HMNS against collapse and that
thermal cooling accelerates its "delayed" collapse. Our simulations demonstrate
explicitly that cooling can induce the catastrophic collapse of a hot
hypermassive neutron star formed following the merger of binary neutron stars.
Thus, cooling physics is important to include in NSNS merger calculations to
accurately determine the lifetime of the HMNS remnant and to extract
information about the NS equation of state, cooling mechanisms, bar
instabilities and B-fields from the GWs emitted during the transient phase
prior to BH formation.Comment: 13 pages, 7 figures, matches published versio
Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity
We simulate head-on collisions from rest at large separation of binary white
dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as
a prelude to our analysis of the circular binary WDNS problem. We focus on
compact binaries whose total mass exceeds the maximum mass that a cold
degenerate star can support, and our goal is to determine the fate of such
systems. A fully general relativistic hydrodynamic computation of a realistic
WDNS head-on collision is prohibitive due to the large range of dynamical time
scales and length scales involved. For this reason, we construct an equation of
state (EOS) which captures the main physical features of NSs while, at the same
time, scales down the size of WDs. We call these scaled-down WD models
"pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of
simulations where the size of the pWD gradually increases toward the realistic
case. We perform two sets of simulations; One set studies the effects of the NS
mass on the final outcome, when the pWD is kept fixed. The other set studies
the effect of the pWD compaction on the final outcome, when the pWD mass and
the NS are kept fixed. All simulations show that 14%-18% of the initial total
rest mass escapes to infinity. All remnant masses still exceed the maximum rest
mass that our cold EOS can support (1.92 solar masses), but no case leads to
prompt collapse to a black hole. This outcome arises because the final
configurations are hot. All cases settle into spherical, quasiequilibrium
configurations consisting of a cold NS core surrounded by a hot mantle,
resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD
compactions, we predict that the likely outcome of a head-on collision of a
realistic, massive WDNS system will be the formation of a quasiequilibrium
Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC
schemes with piecewise polytropes adde
Massive hematuria due to a congenital renal arteriovenous malformation mimicking a renal pelvis tumor: a case report
<p>Abstract</p> <p>Introduction</p> <p>Congenital renal arteriovenous malformations (AVMs) are very rare benign lesions. They are more common in women and rarely manifest in elderly people. In some cases they present with massive hematuria. Contemporary treatment consists of transcatheter selective arterial embolization which leads to resolution of the hematuria whilst preserving renal parenchyma.</p> <p>Case presentation</p> <p>A 72-year-old man, who was heavy smoker, presented with massive hematuria and flank pain. CT scan revealed a filling defect caused by a soft tissue mass in the renal pelvis, which initially led to the suspicion of a transitional cell carcinoma (TCC) of the upper tract, in view of the patient's age and smoking habits. However a subsequent retrograde study could not depict any filling defect in the renal pelvis. Selective right renal arteriography confirmed the presence of a renal AVM by demonstrating abnormal arterial communication with a vein with early visualization of the venous system. At the same time successful selective transcatheter embolization of the lesion was performed.</p> <p>Conclusion</p> <p>This case highlights the importance of careful diagnostic work-up in the evaluation of upper tract hematuria. In the case presented, a congenital renal AVM proved to be the cause of massive upper tract hematuria and flank pain in spite of the initial evidence indicating the likely diagnosis of a renal pelvis tumor.</p
Plasma IMS Composition Measurements for Europa and Ganymede
NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4n surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged
Measuring Drivers’ Physiological Response to Different Vehicle Controllers in Highly Automated Driving (HAD): Opportunities for Establishing Real-Time Values of Driver Discomfort
This study investigated how driver discomfort was influenced by different types of automated vehicle (AV) controllers, compared to manual driving, and whether this response changed in different road environments, using heart-rate variability (HRV) and electrodermal activity (EDA). A total of 24 drivers were subjected to manual driving and four AV controllers: two modelled to depict “human-like” driving behaviour, one conventional lane-keeping assist controller, and a replay of their own manual drive. Each drive lasted for ~15 min and consisted of rural and urban environments, which differed in terms of average speed, road geometry and road-based furniture. Drivers showed higher skin conductance response (SCR) and lower HRV during manual driving, compared to the automated drives. There were no significant differences in discomfort between the AV controllers. SCRs and subjective discomfort ratings showed significantly higher discomfort in the faster rural environments, when compared to the urban environments. Our results suggest that SCR values are more sensitive than HRV-based measures to continuously evolving situations that induce discomfort. Further research may be warranted in investigating the value of this metric in assessing real-time driver discomfort levels, which may help improve acceptance of AV controllers
General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields
As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at
the end of a BH-NS binary inspiral, its magnetic fields will be stretched and
amplified. If sufficiently strong, these magnetic fields may impact the
gravitational waveforms, merger evolution and mass of the remnant disk.
Formation of highly-collimated magnetic field lines in the disk+spinning BH
remnant may launch relativistic jets, providing the engine for a short-hard
GRB. We analyze this scenario through fully general relativistic,
magnetohydrodynamic (GRMHD) BHNS simulations from inspiral through merger and
disk formation. Different initial magnetic field configurations and strengths
are chosen for the NS interior for both nonspinning and moderately spinning
(a/M=0.75) BHs aligned with the orbital angular momentum. Only strong interior
(Bmax~10^17 G) initial magnetic fields in the NS significantly influence merger
dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning
and spinning BH cases, respectively. However, detecting the imprint of even a
strong magnetic field may be challenging for Advanced LIGO. Though there is no
evidence of mass outflows or magnetic field collimation during the preliminary
simulations we have performed, higher resolution, coupled with longer disk
evolutions and different initial magnetic field configurations, may be required
to definitively assess the possibility of BHNS binaries as short-hard GRB
progenitors.Comment: 31 pages, 26 figures, 3 tables, accepted for publication to PR
Fisk-Gloeckler Suprathermal Proton Spectrum in the Heliosheath and the Local Interstellar Medium
Convergence of suprathermal keV-MeV proton and ion spectra approximately to the Fisk-Gloeckler (F-G) form j(E) = j(sub 0) E(sup -1.5) in Voyager land 2 heliosheath measurements is suggestive of distributed acceleration in Kolmogorov turbulence which may extend well beyond the heliopause into the local interstellar medium (LISM). Turbulence of this type is already indicated by interstellar radio scintillation measurements of electron density power spectra. Previously published extrapolations (Cooper et al., 2003, 2006) of the LISM proton spectrum from eV to GeV energies are highly consistent with the F-G power-law and further indicative of such turbulence and LISM effectiveness of the F-G cascade acceleration process. The LISM pressure computed from this spectrum well exceeds that from current estimates for the LISM magnetic field, so exchange of energy between the protons and the magnetic field would likely have a strong role in evolution of the turbulence as per the F-G theory and as long ago proposed for cosmic ray energies by Parker and others. Pressure-dependent estimates of the LISM field strength should not ignore this potentially strong and even dominant contribution from the plasma. Presence of high-beta suprathermal plasma on LISM field lines could significantly affect interactions with the heliospheric outer boundary region and might potentially account for distributed and more discrete features in ongoing measurements of energetic neutral emission from the Interstellar Boundary Explorer (IBEX) mission
Constraint propagation equations of the 3+1 decomposition of f(R) gravity
Theories of gravity other than general relativity (GR) can explain the
observed cosmic acceleration without a cosmological constant. One such class of
theories of gravity is f(R). Metric f(R) theories have been proven to be
equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term.
Using this equivalence and a 3+1 decomposition of the theory it has been shown
that metric f(R) gravity admits a well-posed initial value problem. However, it
has not been proven that the 3+1 evolution equations of metric f(R) gravity
preserve the (hamiltonian and momentum) constraints. In this paper we show that
this is indeed the case. In addition, we show that the mathematical form of the
constraint propagation equations in BD-equilavent f(R) gravity and in f(R)
gravity in both the Jordan and Einstein frames, is exactly the same as in the
standard ADM 3+1 decomposition of GR. Finally, we point out that current
numerical relativity codes can incorporate the 3+1 evolution equations of
metric f(R) gravity by modifying the stress-energy tensor and adding an
additional scalar field evolution equation. We hope that this work will serve
as a starting point for relativists to develop fully dynamical codes for valid
f(R) models.Comment: 25 pages, matches published version in CQG, references update
- …