10 research outputs found

    Functional interaction between the epidermal growth factor receptor and c-Src kinase activity

    Get PDF
    AbstractTo study the relationship between the tyrosine kinase c-Src and the epidermal growth factor receptor (EGF-R), we used the breast cancer cell line ZR75-1, which was transfected with the EGF-R. The EGF-R transfected cell line expressed 60 times more EGF-R than a control cell line transfected with the empty vector. In the presence of EGF, the EGF-R over-expressing cell line grew much faster than the control cell line. Both cell lines expressed approximately equal amounts of c-Src. However, the cell line over-expressing the EGF-R showed a twofold enhancement of c-Src kinase activity after EGF stimulation. The activation of c-Src kinase by EGF was confirmed in other EGF-R expressing cell types

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Dynamic phospholipid signaling by G protein-coupled receptors

    Get PDF
    AbstractG protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways

    Epac and the cardiovascular system

    No full text
    Exchange protein activated by cyclic AMP (Epac) - a cyclic AMP-activated guanine nucleotide exchange factor for Ras-like GTPases - has emerged as a novel mediator of pivotal processes in the cardiovascular system, including cellular calcium handling, hypertrophy, integrin-mediated cell adhesion, establishment of cell polarity, cell migration and endothelial barrier functioning. Epac controls these various cellular responses apparently by signaling to several effector proteins. Spatiotemporal dynamics in the subcellular distribution of Epac-driven signaling networks probably determine the net outcome of cyclic AMP signaling in the cardiovascular system

    B cell receptor-induced growth arrest and apoptosis in WEHI-231 immature B lymphoma cells involve cyclic AMP and Epac proteins

    No full text
    Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and antiapoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases. Here we report on novel cyclic AMP-dependent mechanisms of BCR-induced growth arrest and apoptosis in the immature B lymphoma cell line WEHI-231. BCR signaling to ERK1/2 and Akt requires cyclic AMP-regulated Epac, the latter acting as a guanine nucleotide exchange factor for Rap1 and H-Ras independent of protein kinase A. Importantly, activation of endogenously expressed Epac by a specific cyclic AMP analog enhanced the induction of growth arrest (reduced DNA synthesis) and apoptosis (nuclear condensation, annexin V binding, caspase-3 cleavage and poly-ADP-ribose polymerase processing) by the BCR. Our data indicate that cyclic AMP-dependent Epac signals to ERK1/2 and Akt upon activation of Rap1 and H-Ras, and is involved in BCR-induced growth arrest and apoptosis in WEHI-231 cells. (C) 2009 Elsevier Inc. All rights reserved

    Epidermal growth factor-induced activation and translocation of c-Src to the cytoskeleton depends on the actin binding domain of the EGF-receptor

    Get PDF
    AbstractIn the epidermal growth factor (EGF)-receptor signal transduction cascade, the non-receptor tyrosine kinase c-Src has been demonstrated to become activated upon EGF stimulation. In this paper we show that c-Src associates with the cytoskeleton and co-isolates with actin filaments upon EGF treatment of NIH-3T3 cells transfected with the EGF receptor. Immunofluorescence studies using CLSM show colocalization of F-actin and endogenous c-Src predominantly around endosomes and not on stress fibers and cell–cell contacts. Stimulation of EGF receptor-transfected NIH-3T3 cells with EGF induces an activation and translocation of c-Src to the cytoskeleton. These processes depend upon the presence of the actin binding domain of the EGF-receptor since in cells that express EGF-receptors lacking this domain, EGF fails to induce an activation and translocation to the cytoskeleton of c-Src. These data suggest a role for the actin binding domain of the EGF-receptor in the translocation of c-Src

    8-pCPT-conjugated cyclic AMP analogs exert thromboxane receptor antagonistic properties

    No full text
    Membrane-permeable 8-(4-chlorophenylthio)-2'-O-methyl cyclic AMP (8-pCPT-2'-O-Me-cAMP) has been shown to specifically activate cAMP- regulated Epac proteins, without direct effects on protein kinase A and protein kinase G. During isometric tension measurements in thoracic aortic rings from Wistar rats, we observed that 8-pCPT-2'-O-Me-cAMP selectively induced a rightward shift of the concentration response curve for the thromboxane mimetic U46619, without altering the contractile response to noradrenaline. We hypothesised that 8-pCPT-2'-O-Me-cAMP and similar compounds may function as direct thromboxane receptor antagonists. Indeed, in addition to 8-pCPT-2'-O-Me-cAMP, also 8-pCPT-cAMP, 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-8-CPT-cAMPS) and 8-CPT-adenosine, but not 8-Bromo-2'-O-Me-cAMP, induced rightward shifts of the contractile response to U46619. Likewise, 8-pCPT-2'-O-Me-cAMP and Rp-8-CPT-cAMPS, but not 8-Bromo-2'-O-Me-cAMP, specifically reduced U46619-induced aggregation of human platelets. In addition, 8-pCPT-2'-O-Me-cAMP and Rp-8-CPT-cAMPS completely reversed U46619-induced reduction of intercellular adhesion molecule-1 expression and migration of human coronary artery endothelial cells. Most important, the cAMP analogs that reduced the contractile response to U46619 also concentration-dependently inhibited binding of the thromboxane receptor radioligand [5,6-(3)F]SQ29548 to human platelets. We conclude that 8-pCPT-conjugated cAMP analogs exert competitive thromboxane receptor antagonistic properties

    Rap2B-Dependent Stimulation of Phospholipase C-ɛ by Epidermal Growth Factor Receptor Mediated by c-Src Phosphorylation of RasGRP3

    No full text
    Receptor tyrosine kinase regulation of phospholipase C-ɛ (PLC-ɛ), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-γ1 and PLC-ɛ, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-ɛ, and Rap2B-dependent translocation of PLC-ɛ to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-γ1 but not of PLC-ɛ. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-γ1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-ɛ

    Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin

    No full text
    The activity state of cofilin, which controls actin dynamics, is driven by a phosphorylation–dephosphorylation cycle. Phosphorylation of cofilin by LIM-kinases results in its inactivation, a process supported by 14-3-3ζ and reversed by dephosphorylation by slingshot phosphatases. Here we report on a novel cellular function for the phosphorylation–dephosphorylation cycle of cofilin. We demonstrate that muscarinic receptor-mediated stimulation of phospholipase D1 (PLD1) is controlled by LIM-kinase, slingshot phosphatase as well as 14-3-3ζ, and requires phosphorylatable cofilin. Cofilin directly and specifically interacts with PLD1 and upon phosphorylation by LIM-kinase1, stimulates PLD1 activity, an effect mimicked by phosphorylation-mimic cofilin mutants. The interaction of cofilin with PLD1 is under receptor control and encompasses a PLD1-specific fragment (aa 585–712). Expression of this fragment suppresses receptor-induced cofilin–PLD1 interaction as well as PLD stimulation and actin stress fiber formation. These data indicate that till now designated inactive phospho-cofilin exhibits an active cellular function, and suggest that phospho-cofilin by its stimulatory effect on PLD1 may control a large variety of cellular functions
    corecore