196 research outputs found

    Domain wall suppression in trapped mixtures of Bose-Einstein condensates

    Full text link
    The ground state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87^{87}Rb atoms in two different hyperfine states in a double well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the inter-species interaction vary.Comment: 9 page

    Quantum Zeno effect in a probed downconversion process

    Full text link
    The distorsion of a spontaneous downconvertion process caused by an auxiliary mode coupled to the idler wave is analyzed. In general, a strong coupling with the auxiliary mode tends to hinder the downconversion in the nonlinear medium. On the other hand, provided that the evolution is disturbed by the presence of a phase mismatch, the coupling may increase the speed of downconversion. These effects are interpreted as being manifestations of quantum Zeno or anti-Zeno effects, respectively, and they are understood by using the dressed modes picture of the device. The possibility of using the coupling as a nontrivial phase--matching technique is pointed out.Comment: 11 pages, 4 figure

    Binary mixtures of condensates in generic confining potentials

    Full text link
    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials.Comment: 20 pages, 2 figure

    Lateral Effects in Fermion Antibunching

    Full text link
    Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.Comment: 22 pages, 4 figure

    Further evidence of antibunching of two coherent beams of fermions

    Full text link
    We describe an experiment confirming the evidence of the antibunching effect on a beam of non interacting thermal neutrons. The comparison between the results recorded with a high energy-resolution source of neutrons and those recorded with a broad energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.Comment: 4 pages, 3 figure

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Reflection and Transmission in a Neutron-Spin Test of the Quantum Zeno Effect

    Get PDF
    The dynamics of a quantum system undergoing frequent "measurements", leading to the so-called quantum Zeno effect, is examined on the basis of a neutron-spin experiment recently proposed for its demonstration. When the spatial degrees of freedom are duely taken into account, neutron-reflection effects become very important and may lead to an evolution which is totally different from the ideal case.Comment: 26 pages, 6 figure
    corecore