66 research outputs found

    Génolevures complete genomes provide data and tools for comparative genomics of hemiascomycetous yeasts

    Get PDF
    The Génolevures online database () provides tools and data relative to 4 complete and 10 partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of hemiascomycetous yeasts. With their relatively small and compact genomes, yeasts offer a unique opportunity for exploring eukaryotic genome evolution. The new version of the Génolevures database provides truly complete (subtelomere to subtelomere) chromosome sequences, 25 000 protein-coding and tRNA genes, and in silico analyses for each gene element. A new feature of the database is a novel collection of conserved multi-species protein families and their mapping to metabolic pathways, coupled with an advanced search feature. Data are presented with a focus on relations between genes and genomes: conservation of genes and gene families, speciation, chromosomal reorganization and synteny. The Génolevures site includes an area for specific studies by members of its international community

    Genome-wide computational prediction of tandem gene arrays: application in yeasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes an efficient <it>in silico </it>method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.</p> <p>Results</p> <p>Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.</p> <p>Conclusion</p> <p>The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</p

    Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.

    Get PDF
    International audienceNatural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms

    Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes

    Get PDF
    The Génolevures online database (http://cbi.labri.fr/Genolevures/ and http://genolevures.org/) provides exploratory tools and curated data sets relative to nine complete and seven partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of Hemiascomycete yeasts. The 2008 update to the Génolevures database provides four new genomes in complete (subtelomere to subtelomere) chromosome sequences, 50 000 protein-coding and tRNA genes, and in silico analyses for each gene element. A key element is a novel classification of conserved multi-species protein families and their use in detecting synteny, gene fusions and other aspects of genome remodeling in evolution. Our purpose is to release high-quality curated data from complete genomes, with a focus on the relations between genes, genomes and proteins

    Genomic Exploration of the Hemiascomycetous Yeasts: 1. A set of yeast species for molecular evolution studies11Sequences and annotations are accessible at: Génoscope (http://www.genoscope.cns.fr), FEBS Letters Website (http://www.elsevier.nl/febs/show/), Bordeaux (http://cbi.genopole-bordeaux.fr/Genolevures) and were deposited into the EMBL database (accession number from AL392203 to AL441602).

    Get PDF
    AbstractThe identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20 000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the ‘yeast-specific’ genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated ‘Génolevures’

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Genomic Exploration of the Hemiascomycetous Yeasts: 19. Ascomycetes-specific genes

    Get PDF
    AbstractComparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from ‘maverick’ genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the ‘maverick’ genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear ‘Ascomycetes-specific’. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the ‘Ascomycetes-specific’ genes tend to diverge more rapidly in evolution than that of other genes. Half of the ‘Ascomycetes-specific’ genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them

    Phylogénie moléculaire des champignons

    No full text
    National audienc

    The Génolevures database

    No full text
    International audienc
    corecore