19 research outputs found
Traumatic dental injuries over an 8-year period at a German dental center: a retrospective overview and cross-sectional analysis
Abstract Background/aim The aim of this study was to analyze a population of patients who had suffered from traumatic dental injuries (TDIs) by using different patient-, trauma- and treatment-related parameters. Material and methods All dental records of patients ≥ 3 years old who had presented at the dental emergency service between Jan 1, 2009 and Dec 31, 2016 for the treatment of dental trauma were analyzed. A total of 2758 patients were invited for a recall examination at the Department for Dental Surgery and Implantology, ZZMK Carolinum, Goethe University Frankfurt, Germany; of these, 269 patients attended their recall appointments. Results The enrolled patient population consisted of 1718 males and 1040 females, with a mean age of 19.63 years (median 12.00 ± 17.354 years). A total of 4909 injured teeth were assessed, with a mean of 1.78 injured teeth per patient (median 2.00 ± 1.279). Males were found to be more frequently affected by TDIs compared to females (1.65:1). The majority of these injuries occurred in the first two decades of life (66.1%; n = 1824). The majority of the patients presented for initial treatment within 24 h of their accident (95.7%). The most frequent TDIs were isolated luxation injuries 49.4% (n = 2426) and isolated crown fractures 30% (n = 1472). Combination injuries were diagnosed in 20.6% of the cases (n = 1011). Conclusions Based on the findings of the present analysis, it can be concluded that males were more frequently affected by TDIs than females. Most patients had suffered from TDI before they had turned 10 years of age. Overall, the enamel–dentin fracture was found to be the most frequent injury, followed by concussions and lateral luxations. Graphical Abstrac
Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots
Abstract Background To assess and compare the radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots (TR) and autogenous bone (AB) blocks. Methods In a total of 30 patients, lateral ridge augmentation was conducted in parallel groups using either (1) healthy autogenous tooth roots (e.g., retained wisdom or impacted teeth) (n = 15) or (2) cortical autogenous bone blocks harvested from the retromolar area. Cone-beam computed tomographic (CBCT) scans taken at 26 weeks of submerged healing were analyzed for the basal graft integration (i.e., contact between the graft and the host bone in %) (BI26) and the cross-sectional grafted area (mm2) (SA26). Results Both groups revealed a comparable clinical width of the alveolar ridge at baseline (CWb). Mean BI26 and SA26 values amounted to 69.26 ± 26.01% (median 72.44) and 22.07 ± 12.98 mm2 (median 18.83) in the TR group and 79.67 ± 15.66% (median 78.85) and 12.42 ± 10.11 mm2 (median 11.36) in the AB group, respectively. Between-group differences in mean SA26 values were statistically significant (p = 0.031). Linear regression analysis failed to reveal any significant correlations between BI26 and CWb/SA26 values in either group. Conclusions TR grafts may be associated with improved SA26 values following lateral alveolar ridge augmentation. Trial registration DRKS00009586. Registered 10 February 2016
Radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots
Background: To assess and compare the radiographic outcomes following lateral alveolar ridge augmentation using autogenous tooth roots (TR) and autogenous bone (AB) blocks.
Methods: In a total of 30 patients, lateral ridge augmentation was conducted in parallel groups using either (1) healthy autogenous tooth roots (e.g., retained wisdom or impacted teeth) (n = 15) or (2) cortical autogenous bone blocks harvested from the retromolar area. Cone-beam computed tomographic (CBCT) scans taken at 26 weeks of submerged healing were analyzed for the basal graft integration (i.e., contact between the graft and the host bone in %) (BI26) and the cross-sectional grafted area (mm2) (SA26).
Results: Both groups revealed a comparable clinical width of the alveolar ridge at baseline (CWb). Mean BI26 and SA26 values amounted to 69.26 ± 26.01% (median 72.44) and 22.07 ± 12.98 mm2 (median 18.83) in the TR group and 79.67 ± 15.66% (median 78.85) and 12.42 ± 10.11 mm2 (median 11.36) in the AB group, respectively. Between-group differences in mean SA26 values were statistically significant (p = 0.031). Linear regression analysis failed to reveal any significant correlations between BI26 and CWb/SA26 values in either group.
Conclusions: TR grafts may be associated with improved SA26 values following lateral alveolar ridge augmentation.
Trial registration: DRKS00009586. Registered 10 February 2016
Discomfort/pain due to periodontal and peri‐implant probing with/without platform switching
Objective: To compare discomfort/pain following periodontal probing around teeth and peri‐implant probing around implants with or without platform switching.
Methods: Two dentists recruited and examined 65 patients, each of them exhibiting a dental implant with a contralateral tooth. Only two types of implants were included: one with and one without platform switching. Periodontal and peri‐implant probing depths (PPD) and probing attachment level (PAL) were assessed. Whether implant or tooth was measured first was randomly assigned. Immediately after probing, patients scored discomfort/pain using a visual analogue scale (VAS). The emergence profiles of implant crowns were assessed as angles between interproximal surfaces on radiographs.
Results: Sixty‐five patients (age 69; 63/76 years [median; lower/upper quartile]; 38 females, 11 smokers) were examined. With the exception of mean PPD and PAL (p < .05) clinical parameters (PPD, PAL, bleeding on probing, suppuration) were well balanced between implants and teeth. Peri‐implant probing (VAS: 10; 0.75/16.25) caused significantly (p < .001) more discomfort/pain than periodontal probing (4; 0/10). Logistic regression analysis identified a larger difference between discomfort/pain for peri‐implant and periodontal probing in the maxilla than the mandible (p = .003). Comparing discomfort/pain between implants maxilla (p = .006) and emergence profile (p = .015) were associated with discomfort/pain. Type of implant (with/without platform switching) had no significant effect on discomfort/pain.
Conclusions: Peri‐implant probing caused significantly more discomfort/pain than periodontal probing. Implant design with/without platform switching failed to have a significant effect on discomfort/pain
Discomfort/pain due to periodontal and peri‐implant probing with/without platform switching
Objective: To compare discomfort/pain following periodontal probing around teeth and peri‐implant probing around implants with or without platform switching.
Methods: Two dentists recruited and examined 65 patients, each of them exhibiting a dental implant with a contralateral tooth. Only two types of implants were included: one with and one without platform switching. Periodontal and peri‐implant probing depths (PPD) and probing attachment level (PAL) were assessed. Whether implant or tooth was measured first was randomly assigned. Immediately after probing, patients scored discomfort/pain using a visual analogue scale (VAS). The emergence profiles of implant crowns were assessed as angles between interproximal surfaces on radiographs.
Results: Sixty‐five patients (age 69; 63/76 years [median; lower/upper quartile]; 38 females, 11 smokers) were examined. With the exception of mean PPD and PAL (p < .05) clinical parameters (PPD, PAL, bleeding on probing, suppuration) were well balanced between implants and teeth. Peri‐implant probing (VAS: 10; 0.75/16.25) caused significantly (p < .001) more discomfort/pain than periodontal probing (4; 0/10). Logistic regression analysis identified a larger difference between discomfort/pain for peri‐implant and periodontal probing in the maxilla than the mandible (p = .003). Comparing discomfort/pain between implants maxilla (p = .006) and emergence profile (p = .015) were associated with discomfort/pain. Type of implant (with/without platform switching) had no significant effect on discomfort/pain.
Conclusions: Peri‐implant probing caused significantly more discomfort/pain than periodontal probing. Implant design with/without platform switching failed to have a significant effect on discomfort/pain
Surgical options in oroantral fistula management: a narrative review
Abstract An oroantral fistula (OAF) is a pathological abnormal communication between the oral cavity and the maxillary sinus which may arise as a result of failure of primary healing of an OAF, dental infections, osteomyelitis, radiation therapy, trauma, or iatrogenic complications. With the presence of a fistula, the maxillary sinus is permanently open. Microbial flora passes from the oral cavity into the maxillary sinus, and the inflammation of the sinus occurs with all potential consequences. In literature, various techniques have been proposed for closure of OAFs. Due to the heterogeneity of the data and techniques found, we opted for a narrative review to highlight the variety of techniques discussed in the literature. Techniques of particular interest include the bone sandwich with resorbable guided tissue regeneration (GTR) membrane and platelet-rich fibrin (PRF) used alone as both a clot and a membrane. The great advantage of these techniques is that no donor site surgery is necessary, making the outcome valuable in terms of time savings, cost and, more importantly, less discomfort to the patient. Additionally, both bony and soft tissue closure is performed for OAF, in contrast to flaps, which are typically used for procedures in the sinus area. The reconstructed bony tissue regenerated from these techniques will also be appropriate for endosseous dental implantation
Short‐term outcomes of lateral extraction socket augmentation using autogenous tooth roots: A prospective observational study
Objectives: To assess the short‐term clinical outcomes of lateral augmentation of deficient extraction sockets and two‐stage implant placement using autogenous tooth roots (TR).
Material and methods: A total of n = 13 patients (13 implants) were available for the analysis. At the time of tooth extraction, each subject had received lateral augmentation using the respective non‐retainable but non‐infected tooth root where the thickness of the buccal bone was <0.5 mm or where a buccal dehiscence‐type defect was present. Titanium implants were placed after a submerged healing period of 6 months and loaded after 20 ± 2 weeks (V8). Clinical parameters (e.g., bleeding on probing—BOP, probing pocket depth—PD, mucosal recession—MR, clinical attachment level—CAL) were recorded at V8 and after 26 ± 4 weeks (V9) of implant loading.
Results: At V9, all patients investigated revealed non‐significant changes in mean BOP (−19.23 ± 35.32%), PD (0.24 ± 0.49 mm), MR (0.0 ± 0.0 mm) and CAL (0.24 ± 0.49 mm) values, respectively. There was no significant correlation between the initial gain in ridge width and changes in BOP and PD values.
Conclusions: The surgical procedure was associated with stable peri‐implant tissues on the short‐term
Microstructural volumetric analysis of vertical alveolar ridge augmentation using autogenous tooth roots
Background: To volumetrically assess the bone microstructure following vertical alveolar ridge augmentation using differently conditioned autogenous tooth roots (TR) and second‐stage implant placement.
Materials and methods: The upper premolars were bilaterally extracted in n = 4 beagle dogs and randomly assigned to either autoclavation (TR‐A) or no additional treatment (TR‐C). Subsequently, TR were used as block grafts for vertical alveolar ridge augmentation in both lower quadrants. At 12 weeks, titanium implants were inserted and left to heal 3 weeks. Microcomputed tomography was used to quantify bone volume per tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) at vestibular (v) and oral (o) aspects along the implant and in the augmented upper half of the implant, respectively.
Results: Median BV/TV [TR‐C: 51.33% (v) and 70.42% (o) vs TR‐A: 44.05% (v) and 64.46% (o)], Tb.th [TR‐C: 0.22 mm (v) and 0.27 mm (o) vs TR‐A: 0.23 mm (v) and 0.29 mm (o)] and Tb.Sp [TR‐C: 0.26 mm (v) and 0.13 mm (o) vs TR‐A: 0.29 μm (v) and 0.15 mm (o)] values were comparable in both groups.
Conclusion: Both TR‐C and TR‐A grafts were associated with a comparable bone microstructure within the grafted area
Short‐term outcomes of lateral extraction socket augmentation using autogenous tooth roots: a prospective observational study
Objectives: To assess the short‐term clinical outcomes of lateral augmentation of deficient extraction sockets and two‐stage implant placement using autogenous tooth roots (TR).
Material and methods: A total of n = 13 patients (13 implants) were available for the analysis. At the time of tooth extraction, each subject had received lateral augmentation using the respective non‐retainable but non‐infected tooth root where the thickness of the buccal bone was <0.5 mm or where a buccal dehiscence‐type defect was present. Titanium implants were placed after a submerged healing period of 6 months and loaded after 20 ± 2 weeks (V8). Clinical parameters (e.g., bleeding on probing—BOP, probing pocket depth—PD, mucosal recession—MR, clinical attachment level—CAL) were recorded at V8 and after 26 ± 4 weeks (V9) of implant loading.
Results: At V9, all patients investigated revealed non‐significant changes in mean BOP (−19.23 ± 35.32%), PD (0.24 ± 0.49 mm), MR (0.0 ± 0.0 mm) and CAL (0.24 ± 0.49 mm) values, respectively. There was no significant correlation between the initial gain in ridge width and changes in BOP and PD values.
Conclusions: The surgical procedure was associated with stable peri‐implant tissues on the short‐term
Decision-making in closure of oroantral communication and fistula
Abstract After removal of a dental implant or extraction of a tooth in the upper jaw, the closure of an oroantral fistula (OAF) or oroantral communication (OAC) can be a difficult problem confronting the dentist and surgeon working in the oral and maxillofacial region. Oroantral communication (OAC) acts as a pathological pathway for bacteria and can cause infection of the antrum, which further obstructs the healing process as it is an unnatural communication between the oral cavity and the maxillary sinus. There are different ways to perform the surgical closure of the OAC. The decision-making in closure of oroantral communication and fistula is influenced by many factors. Consequently, it requires a combination of knowledge, experience, and information gathering. Previous narrative research has focused on assessments and comparisons of various surgical techniques for the closure of OAC/OAF. Thus, the decision-making process has not yet been described comprehensively. The present study aims to illustrate all the factors that have to be considered in the management of OACs and OAFs that determine optimal treatment