2 research outputs found

    Human platelet concentrates treated with microbicidal 405 nm light retain hemostasis activity

    Get PDF
    Chemical and UV light-based pathogen reduction technologies are currently in use for human platelet concentrates (PCs) to enhance safety from transfusion-transmitted infections. Relative to UV light, 405 nm violet-blue light in the visible spectrum is known to be less harmful. Hence, in this report for the first time, we have assessed the global hemostasis activity of PCs stored in plasma and the activities of six plasma coagulation factors (CFs) as a measure of in vitro hemostatic activity following exposure to the microbicidal 405 nm light. Apheresis PC samples collected from each screened human donor (n = 22) were used for testing of PCs and platelet poor plasma (PPP). Both PCs and PPPs were treated for 5 h with 405 nm light to achieve a previously established microbicidal light dose of 270 J/cm2. Activated partial thromboplastin time and prothrombin time-based potency assays using a coagulation analyzer and hemostatic capacity via Thromboelastography were analyzed. Thromboelastography analysis of the light-treated PCs and plasma present in the PCs showed little difference between the treated and untreated samples. Further, plasma present in the PCs during the light treatment demonstrated a better stability in potency assays for several coagulation factors compared to the plasma alone prepared from PCs first and subjected to the light treatment separately. Overall, PCs stored in plasma treated with 405 nm violet-blue light retain activity for hemostasis

    Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex

    No full text
    Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research
    corecore