6,383 research outputs found
Recommended from our members
An ontological approach for recovering legacy business content
Legacy Information Systems (LIS) pose a challenge for many organizations. On one hand, LIS are viewed as aging systems needing replacement; on the other hand, years of accumulated business knowledge have made these systems mission-critical. Current approaches however are often criticized for being overtly dependent on technology and ignoring the business knowledge which resides within LIS. In this light, this paper proposes a means of capturing the business knowledge in a technology agnostic manner and transforming it in a way that reaps the benefits of clear semantic expression - this transformation is achieved via the careful use of ontology. The approach called Content Sophistication (CS) aims to provide a model of the business that more closely adheres to the semantics and relationships of objects existing in the real world. The approach is illustrated via an example taken from a case study concerning the renovation of a large financial system and the outcome of the approach results in technology agnostic models that show improvements along several dimensions
The Evolution of L and T Dwarfs in Color-Magnitude Diagrams
We present new evolution sequences for very low mass stars, brown dwarfs and
giant planets and use them to explore a variety of influences on the evolution
of these objects. We compare our results with previous work and discuss the
causes of the differences and argue for the importance of the surface boundary
condition provided by atmosphere models including clouds.
The L- to T-type ultracool dwarf transition can be accommodated within the
Ackerman & Marley (2001) cloud model by varying the cloud sedimentation
parameter. We develop a simple model for the evolution across the L/T
transition. By combining the evolution calculation and our atmosphere models,
we generate colors and magnitudes of synthetic populations of ultracool dwarfs
in the field and in galactic clusters. We focus on near infrared color-
magnitude diagrams (CMDs) and on the nature of the ``second parameter'' that is
responsible for the scatter of colors along the Teff sequence. Variations in
metallicity and cloud parameters, unresolved binaries and possibly a relatively
young population all play a role in defining the spread of brown dwarfs along
the cooling sequence. We find that the transition from cloudy L dwarfs to
cloudless T dwarfs slows down the evolution and causes a pile up of substellar
objects in the transition region, in contradiction with previous studies. We
apply the same model to the Pleiades brown dwarf sequence. Taken at face value,
the Pleiades data suggest that the L/T transition occurs at lower Teff for
lower gravity objects. The simulated populations of brown dwarfs also reveal
that the phase of deuterium burning produces a distinctive feature in CMDs that
should be detectable in ~50-100 Myr old clusters.Comment: Accepted for publication in the ApJ. 52 pages including 20 figure
Radio-gamma-ray Connection and Spectral Evolution in 4C+49.22 (S4 1150+49): the Fermi, Swift and Planck View
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope detected a strong γ-ray flare on 2011 May 15 from a source identified as 4C +49.22, a flat spectrum radio quasar (FSRQ) also known as S4 1150+49. This blazar, characterized by a prominent radio–optical–X-ray jet, was in a low γ-ray activity state during the first years of Fermi observations. Simultaneous observations during the quiescent, outburst and post-flare γ-ray states were obtained by Swift, Planck and optical–IR–radio telescopes (Instituto Nacional de Astrofísica, Óptica y Electrónica, Catalina Sky Survey, Very Long Baseline Array [VLBA], Metsähovi). The flare is observed from microwave to X-ray bands with correlated variability and the Fermi, Swift and Planck data for this FSRQ show some features more typical of BL Lac objects, like the synchrotron peak in the optical band that outshines the thermal blue-bump emission, and the X-ray spectral softening. Multi-epoch VLBA observations show the ejection of a new component close in time with the GeV γ-ray flare. The radio-to-γ-ray spectral energy distribution is modelled and fitted successfully for the outburst and the post-flare epochs using either a single flaring blob with two emission processes (synchrotron self-Compton (SSC), and external-radiation Compton), and a two-zone model with SSC-only mechanism
Generalised Decision Level Ensemble Method for Classifying Multi-media Data
In recent decades, multimedia data have been commonly generated and used in various domains, such as in healthcare and social media due to their ability of capturing rich information. But as they are unstructured and separated, how to fuse and integrate multimedia datasets and then learn from them eectively have been a main challenge to machine learning. We present a novel generalised decision level ensemble method (GDLEM) that combines the multimedia datasets at decision level. After extracting features from each of multimedia datasets separately, the method trains models independently on each media dataset and then employs a generalised selection function to choose the appropriate models to construct a heterogeneous ensemble. The selection function is dened as a weighted combination of two criteria: the accuracy of individual models and the diversity among the models. The framework is tested on multimedia data and compared with other heterogeneous ensembles. The results show that the GDLEM is more exible and eective
Coordinate Systems: Level Ascending Ontological Options
A major challenge faced in the deployment of collaborating unmanned vehicles is enabling the semantic interoperability of sensor data. One aspect of this, where there is significant opportunity for improvement, is characterizing the coordinate systems for sensed position data. We are involved in a proof of concept project that addresses this challenge through a foundational conceptual model using a constructional approach based upon the BORO Foundational Ontology. The model reveals the characteristics as sets of options for configuring the coordinate systems. This paper examines how these options involve, ontologically, ascending levels. It identifies two types of levels, the well-known type levels and the less well-known tuple/relation levels
A novel model of delamination bridging via Z-pins in composite laminates
AbstractA new micro-mechanical model is proposed for describing the bridging actions exerted by through-thickness reinforcement on delaminations in prepreg based composite materials, subjected to a mixed-mode (I–II) loading regime. The model applies to micro-fasteners in the form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite laminates. These are described as Euler–Bernoulli beams inserted in an elastic foundation that represents the embedding composite laminate. Equilibrium equations that relate the delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in terms of the laminate architecture and the delamination mode. The apparent fracture toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the through-thickness reinforcement, normalised with respect to a reference area. The model is validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a quasi-isotropic laminate
Asymmetric Fermi superfluid with different atomic species in a harmonic trap
We study the dilute fermion gas with pairing between two species and unequal
concentrations in a harmonic trap using the mean field theory and the local
density approximation. We found that the system can exhibit a superfluid shell
structure sandwiched by the normal fermions. This superfluid shell structure
occurs if the mass ratio is larger then certain critical value which increases
from the weak-coupling BCS region to the strong-coupling BEC side. In the
strong coupling BEC regime, the radii of superfluid phase are less sensitive to
the mass ratios and are similar to the case of pairing with equal masses.
However, the lighter leftover fermions are easier to mix with the superfluid
core than the heavier ones. A partially polarized superfluid can be found if
the majority fermions are lighter, whereas phase separation is still found if
they are heavier.Comment: 12 pages, 7 figure
Metastability in Spin-Polarized Fermi Gases
We study the role of particle transport and evaporation on the phase
separation of an ultracold, spin-polarized atomic Fermi gas. We show that the
previously observed deformation of the superfluid paired core is a result of
evaporative depolarization of the superfluid due to a combination of enhanced
evaporation at the center of the trap and the inhibition of spin transport at
the normal-superfluid phase boundary. These factors contribute to a
nonequilibrium jump in the chemical potentials at the phase boundary. Once
formed, the deformed state is highly metastable, persisting for times of up to
2 s.Comment: 4 pages, 6 figure
- …