6,383 research outputs found

    The Evolution of L and T Dwarfs in Color-Magnitude Diagrams

    Full text link
    We present new evolution sequences for very low mass stars, brown dwarfs and giant planets and use them to explore a variety of influences on the evolution of these objects. We compare our results with previous work and discuss the causes of the differences and argue for the importance of the surface boundary condition provided by atmosphere models including clouds. The L- to T-type ultracool dwarf transition can be accommodated within the Ackerman & Marley (2001) cloud model by varying the cloud sedimentation parameter. We develop a simple model for the evolution across the L/T transition. By combining the evolution calculation and our atmosphere models, we generate colors and magnitudes of synthetic populations of ultracool dwarfs in the field and in galactic clusters. We focus on near infrared color- magnitude diagrams (CMDs) and on the nature of the ``second parameter'' that is responsible for the scatter of colors along the Teff sequence. Variations in metallicity and cloud parameters, unresolved binaries and possibly a relatively young population all play a role in defining the spread of brown dwarfs along the cooling sequence. We find that the transition from cloudy L dwarfs to cloudless T dwarfs slows down the evolution and causes a pile up of substellar objects in the transition region, in contradiction with previous studies. We apply the same model to the Pleiades brown dwarf sequence. Taken at face value, the Pleiades data suggest that the L/T transition occurs at lower Teff for lower gravity objects. The simulated populations of brown dwarfs also reveal that the phase of deuterium burning produces a distinctive feature in CMDs that should be detectable in ~50-100 Myr old clusters.Comment: Accepted for publication in the ApJ. 52 pages including 20 figure

    Radio-gamma-ray Connection and Spectral Evolution in 4C+49.22 (S4 1150+49): the Fermi, Swift and Planck View

    Get PDF
    The Large Area Telescope on board the Fermi Gamma-ray Space Telescope detected a strong γ-ray flare on 2011 May 15 from a source identified as 4C +49.22, a flat spectrum radio quasar (FSRQ) also known as S4 1150+49. This blazar, characterized by a prominent radio–optical–X-ray jet, was in a low γ-ray activity state during the first years of Fermi observations. Simultaneous observations during the quiescent, outburst and post-flare γ-ray states were obtained by Swift, Planck and optical–IR–radio telescopes (Instituto Nacional de Astrofísica, Óptica y Electrónica, Catalina Sky Survey, Very Long Baseline Array [VLBA], Metsähovi). The flare is observed from microwave to X-ray bands with correlated variability and the Fermi, Swift and Planck data for this FSRQ show some features more typical of BL Lac objects, like the synchrotron peak in the optical band that outshines the thermal blue-bump emission, and the X-ray spectral softening. Multi-epoch VLBA observations show the ejection of a new component close in time with the GeV γ-ray flare. The radio-to-γ-ray spectral energy distribution is modelled and fitted successfully for the outburst and the post-flare epochs using either a single flaring blob with two emission processes (synchrotron self-Compton (SSC), and external-radiation Compton), and a two-zone model with SSC-only mechanism

    Generalised Decision Level Ensemble Method for Classifying Multi-media Data

    Get PDF
    In recent decades, multimedia data have been commonly generated and used in various domains, such as in healthcare and social media due to their ability of capturing rich information. But as they are unstructured and separated, how to fuse and integrate multimedia datasets and then learn from them eectively have been a main challenge to machine learning. We present a novel generalised decision level ensemble method (GDLEM) that combines the multimedia datasets at decision level. After extracting features from each of multimedia datasets separately, the method trains models independently on each media dataset and then employs a generalised selection function to choose the appropriate models to construct a heterogeneous ensemble. The selection function is dened as a weighted combination of two criteria: the accuracy of individual models and the diversity among the models. The framework is tested on multimedia data and compared with other heterogeneous ensembles. The results show that the GDLEM is more exible and eective

    Coordinate Systems: Level Ascending Ontological Options

    Get PDF
    A major challenge faced in the deployment of collaborating unmanned vehicles is enabling the semantic interoperability of sensor data. One aspect of this, where there is significant opportunity for improvement, is characterizing the coordinate systems for sensed position data. We are involved in a proof of concept project that addresses this challenge through a foundational conceptual model using a constructional approach based upon the BORO Foundational Ontology. The model reveals the characteristics as sets of options for configuring the coordinate systems. This paper examines how these options involve, ontologically, ascending levels. It identifies two types of levels, the well-known type levels and the less well-known tuple/relation levels

    A novel model of delamination bridging via Z-pins in composite laminates

    Get PDF
    AbstractA new micro-mechanical model is proposed for describing the bridging actions exerted by through-thickness reinforcement on delaminations in prepreg based composite materials, subjected to a mixed-mode (I–II) loading regime. The model applies to micro-fasteners in the form of brittle fibrous rods (Z-pins) inserted in the through-thickness direction of composite laminates. These are described as Euler–Bernoulli beams inserted in an elastic foundation that represents the embedding composite laminate. Equilibrium equations that relate the delamination opening/sliding displacements to the bridging forces exerted by the Z-pins on the interlaminar crack edges are derived. The Z-pin failure meso-mechanics is explained in terms of the laminate architecture and the delamination mode. The apparent fracture toughness of Z-pinned laminates is obtained from as energy dissipated by the pull out of the through-thickness reinforcement, normalised with respect to a reference area. The model is validated by means of experimental data obtained for single carbon/BMI Z-pins inserted in a quasi-isotropic laminate

    Asymmetric Fermi superfluid with different atomic species in a harmonic trap

    Full text link
    We study the dilute fermion gas with pairing between two species and unequal concentrations in a harmonic trap using the mean field theory and the local density approximation. We found that the system can exhibit a superfluid shell structure sandwiched by the normal fermions. This superfluid shell structure occurs if the mass ratio is larger then certain critical value which increases from the weak-coupling BCS region to the strong-coupling BEC side. In the strong coupling BEC regime, the radii of superfluid phase are less sensitive to the mass ratios and are similar to the case of pairing with equal masses. However, the lighter leftover fermions are easier to mix with the superfluid core than the heavier ones. A partially polarized superfluid can be found if the majority fermions are lighter, whereas phase separation is still found if they are heavier.Comment: 12 pages, 7 figure

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure
    corecore