97 research outputs found

    Brassica biodiversity conservation: prevailing constraints and future avenues for sustainable distribution of plant genetic resources

    Get PDF
    The past decade has seen an observable loss of plant biodiversity which can be attributed to changing climate conditions, destroying ecosystems to create farmlands and continuous selective breeding for limited traits. This loss of biodiversity poses a significant bottleneck to plant biologists across the globe working on sustainable solutions to address the current barriers of agricultural productivity. Plant genetic resources centers or genebanks that conserve plant germplasm can majorly contribute towards addressing this problem. Second only to soybean, Brassica remains the largest oil-seed crop and is cultivated across 124 countries, and FAO estimates for a combined gross production values of broccoli, cabbages, cauliflower, mustard and rape seeds stands at a staggering 67.5 billion US dollars during the year 2020. With such a global status, wide variety of uses and more recently, growing importance in the health food sector, the conservation of diverse genetic resources of Brassica appeals for higher priority. Here we review the current status of Brassica conservation across plant genebanks. At present, at least 81,752 accessions of Brassica are recorded to be conserved in 148 holding institutes spread across only 81 countries. Several aspects that need to be addressed to improve proper conservation of the Brassica diversity was well as dissemination of germplasm are discussed. Primarily, the number of accessions conserved across countries and the diversity of Brassica taxa most countries has been highly limited which may lead to biodiversity loss in the longer run. Moreover, several practical challenges in Brassica germplasm conservation especially with respect to taxonomic authorities have been discussed. The current review identifies and highlights areas for progress in Brassica conservation, which include but are not limited to, distribution of conserved Brassica biodiversity, challenges faced by conservation biologists, conservation methods, technical hurdles and future avenues for research in diverse Brassica species

    Differential Metabolic Profiles during the Developmental Stages of Plant-Parasitic Nematode Meloidogyne incognita

    No full text
    Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle

    CANFIS—a computer aided diagnostic tool for cancer detection

    No full text

    MRI image denoising for telemedicine

    No full text

    Nano sized heterogeneous acid catalyst from Ceiba pentandra stalks for production of biodiesel using extracted oil from Ceiba pentandra seeds

    Full text link
    Heterogeneous acid catalyst of nano size was prepared by the method of sulfonation of C. pentandra stalks and used to convert C. pentandra seed oil to biodiesel.</p

    Medical Image Denoising using X-lets

    No full text

    Glucosinolate Diversity Analysis in Choy Sum (<i>Brassica rapa</i> subsp. <i>chinensis</i> var. <i>parachinensis</i>) Germplasms for Functional Food Breeding

    No full text
    The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health
    corecore