997 research outputs found

    Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities

    Get PDF
    The performance of two recent {\em ab initio} computational thermochemistry schemes, W1 and W2 theory [J.M.L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999}], is assessed for an enlarged sample of thermochemical data consisting of the ionization potentials and electron affinities in the G2-1 and G2-2 sets, as well as the heats of formation in the G2-1 and a subset of the G2-2 set. We find W1 theory to be several times more accurate for ionization potentials and electron affinities than commonly used (and less expensive) computational thermochemistry schemes such as G2, G3, and CBS-QB3: W2 theory represents a slight improvement for electron affinities but no significant one for ionization potentials. The use of a two-point A+B/L5A+B/L^5 rather than a three-point A+B/CLA+B/C^L extrapolation for the SCF component greatly enhances the numerical stability of the W1 method for systems with slow basis set convergence. Inclusion of first-order spin-orbit coupling is essential for accurate ionization potentials and electron affinities involving degenerate electronic states: inner-shell correlation is somewhat more important for ionization potentials than for electron affinities, while scalar relativistic effects are required for the highest accuracy. The mean deviation from experiment for the G2-1 heats of formation is within the average experimental uncertainty. W1 theory appears to be a valuable tool for obtaining benchmark quality proton affinities.Comment: Journal of Chemical Physics, in press (303115JCP). 2 RevTeX files, first is text and tables, second is E-PAPS tables S-1 through S-5. Additional supplementary material (total energies, basis function exponents) available at http://theochem.weizmann.ac.il/web/papers/w1w2.htm

    Fully ab initio atomization energy of benzene via W2 theory

    Get PDF
    The total atomization energy at absolute zero, (TAE0_0) of benzene, C6_6H6_6, was computed fully {\em ab initio} by means of W2h theory as 1306.6 kcal/mol, to be compared with the experimentally derived value 1305.7+/-0.7 kcal/mol. The computed result includes contributions from inner-shell correlation (7.1 kcal/mol), scalar relativistic effects (-1.0 kcal/mol), atomic spin-orbit splitting (-0.5 kcal/mol), and the anharmonic zero-point vibrational energy (62.1 kcal/mol). The largest-scale calculations involved are CCSD/cc-pV5Z and CCSD(T)/cc-pVQZ; basis set extrapolations account for 6.3 kcal/mol of the final result. Performance of more approximate methods has been analyzed. Our results suggest that, even for systems the size of benzene, chemically accurate molecular atomization energies can be obtained from fully first-principles calculations, without resorting to corrections or parameters derived from experiment.Comment: J. Chem. Phys., accepted. RevTeX, 12 page

    Benchmark {\em ab initio} energy profiles for the gas-phase SN_N2 reactions Y^- + CH3_3X \to CH3_3Y + X^- (X,Y = F,Cl,Br). Validation of hybrid DFT methods

    Get PDF
    The energetics of the gas-phase SN_N2 reactions Y^- + CH3_3X \longrightarrow CH3_3Y + X^- (where X,Y = F, Cl, Br), were studied using (variants on) the recent W1 and W2 {\em ab initio} computational thermochemistry methods. Our computed benchmark data (including cases for which experimental data are unavailable altogether) are used to assess the quality of a number of semiempirical compound thermochemistry schemes such as G2 theory, G3 theory, and CBS-QB3, as well as a variety of density functional theory methods. Upon applying some modifications to the level of theory used for the reference geometry (adding diffuse functions, replacing B3LYP by the very recently proposed mPW1K functional), the compound methods appear to perform well. Only the 'half-and-half' functionals BH&HLYP and mPWH&HPW91, and the empirical mPW1K functional, consistently find all required stationary points; the other functionals fail to find a transition state in the F/Br case. BH&HLYP and mPWH&HPW91 somewhat overcorrect for the tendency of B3LYP (and, to a lesser extent, mPW1PW91) to underestimate barrier heights. The Becke97 and Becke97-1 functionals perform similarly to B3LYP for the problem under study, while the HCTH and HCTH-120 functionals both appear to underestimate central barriers. HCTH underestimates complexation energies; this problem is resolved in HCTH-120. mPW1K appears to exhibit the best performance of the functionals considered, although its energetics are still inferior to the compound thermochemistry methods.Comment: (J. Phys. Chem. A paper JP0031000, in press). Supplementary material included as separate LaTeX fil

    Simultaneous adsorption and biodegradation of reactive dyes using jatropha deoiled cakes

    Get PDF
    © BEIESP. Endemic pollution problems due to discharge of wastewaters are affecting all the aspects of human life. The poor quality effluents coming from industries is destroying the fragile ecosystem, leading to various apprehensions amongst researchers and scientific communities. Treatment of wastewaters have become an urgent need of the society, which cannot be ignored. Incineration, absorption on solid matrices and biological treatment are some of the effluent treatment methods available. These methods, however, have their own disadvantages. This work explores the application of jatropha deoiled cakes on the concurrent adsorption and biological degradation of reactive dyes. Reactive blue, reactive yellow, reactive red were used for the experiments. The combined experiments were tested for effect of glucose concentrations as well as initial concentrations. Glucose concentrations of 1 g/l, 2 g/l and 3 g/l were taken. All the dyes were varied from 100 ppm to 600 ppm. It was observed that combined degradation yielded higher degradation compared to biological degradation alone. The degradation rate varied with the variation of glucose concentration and it also varied with the initial concentration

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue

    Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]

    Full text link
    We demonstrate that a minor modification of the extrapolation proposed by Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the Hartree-Fock limit in conjunction with correlation consistent basis sets. Specifically, a two-point extrapolation of the form EHF,L=EHF,+A(L+1)exp(9L)E_{HF,L}=E_{HF,\infty}+A(L+1)\exp(-9\sqrt{L}) yields HF limits EHF,E_{HF,\infty} with an RMS error of 0.1 millihartree using aug-cc-pVQZ and aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres

    Sea water for reactive dyeing of cottonfabrics

    Get PDF
    In this research work, trials have been taken up with sea water,as an alternative, for dyeing of cotton with different shades of reactivedye and different salt level contents. Dyeing has been carried out withhot brand reactive dye Red H8B using normal water, RO water andsea water (with and without salt). It is inferred that the exhaustion andfixation of the dye are better in case of sea water dyeing. The wash,rub and perspiration fastness are good for sea water dyeing and insome cases the ratings are comparable and in most case the ratings aresimilar to that of the ground water and RO water dyeing
    corecore