6 research outputs found

    Machine Learning for QoS Prediction in Vehicular Communication: Challenges and Solution Approaches

    Full text link
    As cellular networks evolve towards the 6th generation, machine learning is seen as a key enabling technology to improve the capabilities of the network. Machine learning provides a methodology for predictive systems, which can make networks become proactive. This proactive behavior of the network can be leveraged to sustain, for example, a specific quality of service requirement. With predictive quality of service, a wide variety of new use cases, both safety- and entertainment-related, are emerging, especially in the automotive sector. Therefore, in this work, we consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications. We discuss the entire machine learning workflow highlighting less regarded aspects such as the detailed sampling procedures, the in-depth analysis of the dataset characteristics, the effects of splits in the provided results, and the data availability. Reliable machine learning models need to face a lot of challenges during their lifecycle. We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data. We discuss feature engineering and the effects of different splits for the training processes, showcasing that random splits might overestimate performance by more than twofold. Moreover, we investigate diverse sets of input features, where network information proved to be most effective, cutting the error by half. Part of our contribution is the validation of multiple machine learning models within diverse scenarios. We also use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed. Our data is collected from a deployed network that was under full control of the measurement team and covered different vehicular scenarios and radio environments.Comment: 18 pages, 12 Figures. Accepted on IEEE Acces

    Enabling Mobility-Oriented JCAS in 6G Networks: An Architecture Proposal

    Full text link
    Sensing plays a crucial role in autonomous and assisted vehicular driving, as well as in the operation of autonomous drones. The traditional segregation of communication and onboard sensing systems in mobility applications is due to be merged using Joint Communication and Sensing (JCAS) in the development of the 6G mobile radio standard. The integration of JCAS functions into the future road traffic landscape introduces novel challenges for the design of the 6G system architecture. Special emphasis will be placed on facilitating direct communication between road users and aerial drones. In various mobility scenarios, diverse levels of integration will be explored, ranging from leveraging communication capabilities to coordinate different radars to achieving deep integration through a unified waveform. In this paper, we have identified use cases and derive five higher-level Tech Cases (TCs). Technical and functional requirements for the 6G system architecture for a device-oriented JCAS approach will be extracted from the TCs and used to conceptualize the architectural views.Comment: 6 pages, 3 figures, 4th IEEE Symposium on Joint Communication and Sensin

    Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies

    Full text link
    The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the onboarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.Comment: 5 pages, 6 figures. Accepted for presentation at IEEE conference VTC2023-Spring. Available dataset at https://ieee-dataport.org/open-access/berlin-v2
    corecore