99 research outputs found

    MRI in Neurosciences

    Get PDF

    Cortical thickness is not associated with current depression in a clinical treatment study

    Full text link
    BackgroundReduced cortical thickness is a candidate biological marker of depression, although findings are inconsistent. This could reflect analytic heterogeneity, such as use of region‐wise cortical thickness based on the Freesurfer Desikan–Killiany (DK) atlas or surface‐based morphometry (SBM). The Freesurfer Destrieux (DS) atlas (more, smaller regions) has not been utilized in depression studies. This could also reflect differential gender and age effects.MethodsCortical thickness was collected from 170 currently depressed adults and 52 never‐depressed adults. Visually inspected and approved Freesurfer‐generated surfaces were used to extract cortical thickness estimates according to the DK atlas (68 regions) and DS atlas (148 regions) for region‐wise analysis (216 total regions) and for SBM.ResultsOverall, except for small effects in a few regions, the two region‐wise approaches generally failed to discriminate depressed adults from nondepressed adults or current episode severity. Differential effects by age and gender were also rare and small in magnitude. Using SBM, depressed adults showed a significantly thicker cluster in the left supramarginal gyrus than nondepressed adults (P = 0.047) but there were no associations with current episode severity.ConclusionsThree analytic approaches (i.e., DK atlas, DS atlas, and SBM) converge on the notion that cortical thickness is a relatively weak discriminator of current depression status. Differential age and gender effects do not appear to represent key moderators. Robust associations with demographic factors will likely hinder translation of cortical thickness into a clinically useful biomarker. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. Hum Brain Mapp 38:4370–4385, 2017. © 2017 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138250/1/hbm23664_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138250/2/hbm23664.pd

    Test–retest reliability of freesurfer measurements within and between sites: Effects of visual approval process

    Full text link
    In the last decade, many studies have used automated processes to analyze magnetic resonance imaging (MRI) data such as cortical thickness, which is one indicator of neuronal health. Due to the convenience of image processing software (e.g., FreeSurfer), standard practice is to rely on automated results without performing visual inspection of intermediate processing. In this work, structural MRIs of 40 healthy controls who were scanned twice were used to determine the test–retest reliability of FreeSurfer‐derived cortical measures in four groups of subjects—those 25 that passed visual inspection (approved), those 15 that failed visual inspection (disapproved), a combined group, and a subset of 10 subjects (Travel) whose test and retest scans occurred at different sites. Test–retest correlation (TRC), intraclass correlation coefficient (ICC), and percent difference (PD) were used to measure the reliability in the Destrieux and Desikan–Killiany (DK) atlases. In the approved subjects, reliability of cortical thickness/surface area/volume (DK atlas only) were: TRC (0.82/0.88/0.88), ICC (0.81/0.87/0.88), PD (0.86/1.19/1.39), which represent a significant improvement over these measures when disapproved subjects are included. Travel subjects’ results show that cortical thickness reliability is more sensitive to site differences than the cortical surface area and volume. To determine the effect of visual inspection on sample size required for studies of MRI‐derived cortical thickness, the number of subjects required to show group differences was calculated. Significant differences observed across imaging sites, between visually approved/disapproved subjects, and across regions with different sizes suggest that these measures should be used with caution. Hum Brain Mapp 36:3472–3485, 2015. © 2015 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113142/1/hbm22856.pd

    Demonstrating test‐retest reliability of electrophysiological measures for healthy adults in a multisite study of biomarkers of antidepressant treatment response

    Full text link
    Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test‐retest reliability for the three electrophysiological measures selected for a multisite project—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty‐nine healthy controls across four clinical research sites were tested in two sessions separated by about 1 week. Resting EEG (eyes‐open and eyes‐closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60–100 dB SPL). Principal components analysis of current source density waveforms reduced volume conduction and provided reference‐free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low‐resolution electromagnetic tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole, or rACC theta across sessions. Test‐retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good‐to‐excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135271/1/psyp12758_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135271/2/psyp12758.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135271/3/psyp12758-sup-0001-suppinfo1.pd

    A Comprehensive Examination Of White Matter Tracts And Connectometry In Major Depressive Disorder

    Get PDF
    Background Major depressive disorder (MDD) is a debilitating disorder characterized by widespread brain abnormalities. The literature is mixed as to whether or not white matter abnormalities are associated with MDD. This study sought to examine fractional anisotropy (FA) in white matter tracts in individuals with MDD using diffusion tensor imaging (DTI). Methods 139 participants with MDD and 39 healthy controls (HC) in a multisite study were included. DTI scans were acquired in 64 directions and FA was determined in the brain using four methods: region of interest (ROI), tract-based spatial statistics (TBSS), and diffusion tractography. Diffusion connectometry was used to identify white matter pathways associated with MDD. Results There were no significant differences when comparing FA in MDD and HC groups using any method. In the MDD group, there was a significant relationship between depression severity and FA in the right medial orbitofrontal cortex, and between age of onset of MDD and FA in the right caudal anterior cingulate cortex using the ROI method. There was a significant relationship between age of onset and connectivity in the thalamocortical radiation, inferior longitudinal fasciculus, and cerebellar tracts using diffusion connectometry. Conclusions The lack of group differences in FA and connectometry analysis may result from the clinically heterogenous nature of MDD. However, the relationship between FA and depression severity may suggest a state biomarker of depression that should be investigated as a potential indicator of response. Age of onset may also be a significant clinical feature to pursue when studying white matter tracts
    • 

    corecore