11 research outputs found

    Near-Infrared Variability in the Orion Nebula Cluster

    Get PDF
    Using the United Kingdom Infrared Telescope on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ~15,000 stars down to J=20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H-K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P > 15 day) YSOs, including three stars showing widely-spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.Comment: Corrected typo in author nam

    Diffuse Damage Accumulation in the Fracture Process Zone of Human Cortical Bone Specimens and Its Influence on Fracture Toughness

    No full text
    This study was concerned with the mechanics and micromechanisms of diffuse (ultrastructural) damage occurrence in human tibial cortical bone specimens subjected to tension–tension fatigue. A nondestructive technique was developed for damage assessment on the surfaces of intact compact tension specimens using laser scanning confocal microscopy. Results indicated that diffuse damage initiates as a result of fractures in the inter-canalicular regions. Subsequent growth of those microscopic flaws demonstrated multiple deflections from their paths due to 3D spatial distribution of microscopic porosities (lacunae–canalicular porosities) and the stress-concentrating effects of lacunae. Damage dominating effects in the early stages of fatigue had been verified by the observed variations of the fracture toughness due to artificially induced amounts of damage. Toughening behavior was observed as a function of diffuse damage
    corecore