6,007 research outputs found
Physical education as Olympic education
Introduction
In a recent paper (Parry, 1998, p. 64), I argued that
the justification of PE activities lies in their capacity to facilitate the development of certain human excellences of a valued kind. Of course, the problem now lies in specifying those ‘human excellences of a valued kind’, and (for anyone) this task leads us into the area of philosophical anthropology.
I suggested that the way forward for Physical Education lies in the philosophical anthropology (and the ethical ideals) of Olympism, which provide a specification of a variety of human values and excellences which:
•have been attractive to human groups over an impressive span of time and space
•have contributed massively to our historically developed conceptions of ourselves
•have helped to develop a range of artistic and cultural conceptions that have defined Western culture.
•have produced a range of physical activities that have been found universally satisfying and challenging.
Although physical activities are widely considered to be pleasurable, their likelihood of gaining wide acceptance lies rather in their intrinsic value, which transcends the simply hedonic or relative good. Their ability to furnish us with pleasurable experiences depends upon our prior recognition in them of opportunities for the development and expression of valued human excellences. They are widely considered to be such opportunities for the expression of valued human excellences because, even when as local instantiations, their object is to challenge our common human propensities and abilities.
I claimed that Olympic ideals may be seen not merely as inert ‘ideals’, but living ideas which have the power to remake our notions of sport in education, seeing sport not as mere physical activity but as the cultural and developmental activity of an aspiring, achieving, well-balanced, educated and ethical individual.
This paper seeks to make good that claim by trying to develop a case for Physical Education as Olympic Education. I begin by setting out various accounts and conceptions of the Olympic Idea; then I suggest a unifying and organising account of the philosophical anthropology of Olympism; and this is followed by the practical application of that account in two examples of current ethical issues. Finally, I seek to present an account of Physical Education as Olympic Education
3D wedge filling and 2D random-bond wetting
Fluids adsorbed in 3D wedges are shown to exhibit two types of continuous
interfacial unbinding corresponding to critical and tricritical filling
respectively. Analytic solution of an effective interfacial model based on the
transfer-matrix formalism allows us to obtain the asymptotic probability
distribution functions for the interfacial height when criticality and
tricriticality are approached. Generalised random walk arguments show that, for
systems with short-ranged forces, the critical singularities at these
transitions are related to 2D complete and critical wetting with random bond
disorder respectively.Comment: 7 pages, 3 figures, accepted for publication in Europhysics Letter
Correlation function algebra for inhomogeneous fluids
We consider variational (density functional) models of fluids confined in
parallel-plate geometries (with walls situated in the planes z=0 and z=L
respectively) and focus on the structure of the pair correlation function
G(r_1,r_2). We show that for local variational models there exist two
non-trivial identities relating both the transverse Fourier transform G(z_\mu,
z_\nu;q) and the zeroth moment G_0(z_\mu,z_\nu) at different positions z_1, z_2
and z_3. These relations form an algebra which severely restricts the possible
form of the function G_0(z_\mu,z_\nu). For the common situations in which the
equilibrium one-body (magnetization/number density) profile m_0(z) exhibits an
odd or even reflection symmetry in the z=L/2 plane the algebra simplifies
considerably and is used to relate the correlation function to the finite-size
excess free-energy \gamma(L). We rederive non-trivial scaling expressions for
the finite-size contribution to the free-energy at bulk criticality and for
systems where large scale interfacial fluctuations are present. Extensions to
non-planar geometries are also considered.Comment: 15 pages, RevTex, 4 eps figures. To appear in J.Phys.Condens.Matte
Derivation of a Non-Local Interfacial Hamiltonian for Short-Ranged Wetting II: General Diagrammatic Structure
In our first paper, we showed how a non-local effective Hamiltionian for
short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson
model. Here, we combine the Green's function method with standard perturbation
theory to determine the general diagrammatic form of the binding potential
functional beyond the double-parabola approximation for the
Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic
interactions is simply to alter the coefficients of the double parabola-like
zig-zag diagrams and also to introduce curvature and tube-interaction
corrections (also represented diagrammatically), which are of minor importance.
Non-locality generates effective long-ranged many-body interfacial interactions
due to the reflection of tube-like fluctuations from the wall. Alternative wall
boundary conditions (with a surface field and enhancement) and the diagrammatic
description of tricritical wetting are also discussed.Comment: (14 pages, 2 figures) Submitted J. Phys. Condens. Matte
Direct imaging of a digital-micromirror device for configurable microscopic optical potentials
Programable spatial light modulators (SLMs) have significantly advanced the
configurable optical trapping of particles. Typically, these devices are
utilized in the Fourier plane of an optical system, but direct imaging of an
amplitude pattern can potentially result in increased simplicity and
computational speed. Here we demonstrate high-resolution direct imaging of a
digital micromirror device (DMD) at high numerical apertures (NA), which we
apply to the optical trapping of a Bose-Einstein condensate (BEC). We utilise a
(1200 x 1920) pixel DMD and commercially available 0.45 NA microscope
objectives, finding that atoms confined in a hybrid optical/magnetic or
all-optical potential can be patterned using repulsive blue-detuned (532 nm)
light with 630(10) nm full-width at half-maximum (FWHM) resolution, within 5%
of the diffraction limit. The result is near arbitrary control of the density
the BEC without the need for expensive custom optics. We also introduce the
technique of time-averaged DMD potentials, demonstrating the ability to produce
multiple grayscale levels with minimal heating of the atomic cloud, by
utilising the high switching speed (20 kHz maximum) of the DMD. These
techniques will enable the realization and control of diverse optical
potentials for superfluid dynamics and atomtronics applications with quantum
gases. The performance of this system in a direct imaging configuration has
wider application for optical trapping at non-trivial NAs.Comment: 9 page
Is Every Irreducible Shift of Finite Type Flow Equivalent to a Renewal System?
Is every irreducible shift of finite type flow equivalent to a renewal
system? For the first time, this variation of a classic problem formulated by
Adler is investigated, and several partial results are obtained in an attempt
to find the range of the Bowen--Franks invariant over the set of renewal
systems of finite type. In particular, it is shown that the Bowen--Franks group
is cyclic for every member of a class of renewal systems known to attain all
entropies realised by shifts of finite type, and several classes of renewal
systems with non--trivial values of the invariant are constructed.Comment: 22 pages, 5 figures. For the conference proceedings of Operator
Algebra and Dynamics, NordForsk Network Closing Conference, 15-20 May 2012,
Gj\'aargar{\eth}ur, Faroe Island
Early p53 mutations in nondysplastic Barrett's tissue detected by the restriction site mutation (RSM) methodology
Barrett's oesophagus is a premalignant condition whose incidence is rising dramatically. Molecular markers are urgently needed to identify Barrett's patients at the highest risk of cancer progression. To this end, we have used a rapid molecular technique, restriction site mutation (RSM), to detect low-frequency mutations in the p53 tumour suppressor gene in premalignant Barrett's tissues of cancer-free patients. In total, 38 endoscopically diagnosed Barrett's patients with a range of histological stages of Barrett's progression, plus four control patients without Barrett's oesophagus, were analysed for early p53 mutations. Tissue samples taken from these patients (93 samples in total) were analysed for the presence of low-frequency p53 mutations at hotspot codons: 175, 213, 248, 249, 282. In total, 13 of the 38 Barrett's patients were shown to possess a p53 mutation in at least one sample (no mutations in the four control patients). Although no statistically significant associations were found, p53 mutations reflected histological progression in Barrett's patients with p53 mutations found in 30% of metaplasia patients (P=0.4) and low-grade dysplasia patients (P=0.33) and 45% of high-grade dysplasia patients (P=0.15). Detected p53 mutations were mainly GC to AT transitions at CpG sites
- …