21 research outputs found

    Experimental allergic encephalomyelitis in cynomolgus monkeys. Quantitation of T cell responses in peripheral blood.

    Get PDF
    Chronic relapsing-remitting experimental allergic encephalomyelitis (EAE) was induced in cynomolgus monkeys by a single immunization with a homogenate of human brain white matter (BH) in adjuvant. Proliferative T lymphocyte responses to BH, to myelin basic protein (MBP), but not to proteolipid protein, were detected in peripheral blood mononuclear cells (PBMC) of all animals and persisted until their death or, in surviving animals, for greater than 10 mo postimmunization. Responses of higher magnitude tended to be associated with fatal, compared with nonfatal, episodes of clinical EAE. The frequency of MBP-reactive T cells in PBMC of animals with acute EAE was quantitated with a soft agar colony system; the ratio of T cells that proliferated specifically to MBP was estimated at between 5 and 20 per 10(6) PBMC. A similar frequency of peptide-specific T cells was estimated from PBMC of monkeys immunized with a synthetic 14-mer peptide corresponding to a region near the carboxy terminus of MBP. Thus, autoantigen-reactive T cells can be detected in the circulation throughout the course of chronic EAE, are predictive of disease severity, and occur at a frequency similar to that estimated to be present in humans with multiple sclerosis

    In healthy primates, circulating autoreactive T cells mediate autoimmune disease.

    Get PDF
    A T cell response against myelin basic protein (MBP) is thought to contribute to the central nervous system (CNS) inflammation that occurs in the human demyelinating disease multiple sclerosis. To test whether MBP-reactive T cells that are normally retrieved from the circulation are capable of inducing CNS disease, MBP-reactive T cell clones were isolated from the peripheral blood of healthy, unimmunized Callithrix jacchus (C. jacchus) marmosets. This primate species is characterized by a natural chimerism of bone marrow elements between siblings that should make possible adoptive transfer of MBP-reactive T cells. We report that MBP-reactive T cell clones efficiently and reproducibly transfer CNS inflammatory disease between members of C. jacchus chimeric sets. The demyelination that is characteristic of experimental allergic encephalomyelitis induced in C. jacchus by immunization against human white matter did not occur after adoptive transfer of the MBP-reactive clones. It was noteworthy that encephalitogenic T cell clones were diverse in terms of their recognition of different epitopes of MBP, distinguishing the response in C. jacchus from that in some inbred rodents in which restricted recognition of MBP occurs. These findings are the first direct evidence that natural populations of circulating T cells directed against a CNS antigen can mediate an inflammatory autoimmune disease
    corecore