4,376 research outputs found
InSb charge coupled infrared imaging device: The 20 element linear imager
The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram
Experimental study of flow deflectors designed to alleviate ground winds induced by exhaust of 80-by 120-foot wind tunnel
An experimental study directed at finding a deflector ramp that will reduce to an acceptable level the ground winds under the exhaust jet of the 80 by 120 Foot Wind Tunnel at NASA Ames Center is described. A one-fifieth scale model of the full-scale facility was used to investigate how the jet flow field was modified by the various design parameters of the ramp. It was concluded that the ground winds were alleviated sufficiently by a ramp with end plates located next to the wind tunnel building along the ground edge of the exhaust opening. At full scale, the ramp should have a slant length of 7.62 m (25 ft) or more, and would be elevated at about 45 degrees to the ground plane. The material should have holes less than 15.2 (6 in) in diameter distributed uniformly over its surface to produce a porosity of about 30%
Co-navigating the Complexities of School Reform: The Establishment and On-going Maintenance of Relational Trust in School Reform Efforts
The purpose of this research was to examine the ways in which the principal and literacy coach collectively developed and maintained relational trust in order to establish school literacy reform efforts. Drawing from a larger set of data, we employed qualitative methods to explore interviews and surveys from the principals and literacy coaches at two different schools who were able to implement literacy reform for several consecutive years. The relational trust established between the coach and principal enabled them to co-navigate issues that might have otherwise impeded literacy reform efforts in their school. Acting together, the principal and the coach were able to communicate a common vision for literacy reform, which resulted in increased implementation of the reform framework in their schools
Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration
Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints
Body Composition and Sensory Characteristics of Pork from CLA-Fed Pigs
Conjugated linoleic acid (CLA) improved carcass characteristics of pork by decreasing backfat and increasing fat hardness (firmness). CLA also improved the color of pork loin chops and patties both initially and over retail storage time. Combined, these carcass composition and sensory characteristic improvements could provide processors and consumers a more desirable product. The increase in fat hardness should provide processors with bellies that have improved sliceability and consumers with bacon that holds its shape when cooke
Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive
Three weeks of summertime surface‐based chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000–1400 LT median values of observations to drive the model and by excluding short‐lived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site
- …