20,687 research outputs found

    Can conduction induce convection? The non-linear saturation of buoyancy instabilities in dilute plasmas

    Full text link
    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two and three-dimensional magnetohydrodynamic simulations. For weak magnetic fields, dilute plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that, in the presence of a sustained temperature gradient, the MTI drives strong turbulence and operates as an efficient magnetic dynamo (akin to standard, adiabatic convection). Together, the turbulent and magnetic energies contribute up to ~10% of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, ~1.5% of rho c_s^3. These findings are robust even in the presence of an external source of strong turbulence. Our results on the nonlinear saturation of the HBI are consistent with previous studies but we explain physically why the HBI saturates quiescently by re-orienting the magnetic field (suppressing the conductive heat flux through the plasma), while the MTI saturates by generating sustained turbulence. We also systematically study how an external source of turbulence affects the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the shearing rate of the turbulence is faster than the growth rate of the HBI. In particular, our results provide a simple mapping between the level of turbulence in a plasma and the effective isotropic thermal conductivity. We discuss the astrophysical implications of these findings, with a particular focus on the intracluster medium of galaxy clusters.Comment: 18 pages, 14 figures. Submitted to MNRA

    Dynamical stability of a thermally stratified intracluster medium with anisotropic momentum and heat transport

    Full text link
    In weakly-collisional plasmas such as the intracluster medium (ICM), heat and momentum transport become anisotropic with respect to the local magnetic field direction. Anisotropic heat conduction causes the slow magnetosonic wave to become buoyantly unstable to the magnetothermal instability (MTI) when the temperature increases in the direction of gravity and to the heat-flux--driven buoyancy instability (HBI) when the temperature decreases in the direction of gravity. The local changes in magnetic field strength that attend these instabilities cause pressure anisotropies that viscously damp motions parallel to the magnetic field. In this paper we employ a linear stability analysis to elucidate the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy) on the MTI and HBI. By stifling the convergence/divergence of magnetic field lines, pressure anisotropy significantly affects how the ICM interacts with the temperature gradient. Instabilities which depend upon the convergence/divergence of magnetic field lines to generate unstable buoyant motions (the HBI) are suppressed over much of the wavenumber space, whereas those which are otherwise impeded by field-line convergence/divergence (the MTI) are strengthened. As a result, the wavenumbers at which the HBI survives largely unsuppressed in the ICM have parallel components too small to rigorously be considered local. This is particularly true as the magnetic field becomes more and more orthogonal to the temperature gradient. In contrast, the fastest-growing MTI modes are unaffected by anisotropic viscosity. However, we find that anisotropic viscosity couples slow and Alfven waves in such a way as to buoyantly destabilise Alfvenic fluctuations when the temperature increases in the direction of gravity. Consequently, many wavenumbers previously considered MTI-stable or slow-growing are in fact maximally unstable. (abridged)Comment: 15 pages, 7 figures, accepted by MNRAS; typos fixed and minor corrections made; color figures available at http://www-thphys.physics.ox.ac.uk/people/kunz/Kunz11_colorfigs.pd

    Exploiting Full-Waveform Lidar Data and Multiresolution Wavelet Analysis for Vertical Object Detection and Recognition

    Get PDF
    A current challenge in performing airport obstruction surveys using airborne lidar is lack of reliable, automated methods for extracting and attributing vertical objects from the lidar data. This paper presents a new approach to solving this problem, taking advantage of the additional data provided byfull-waveform systems. The procedure entails first deconvolving and georeferencing the lidar waveformdata to create dense, detailed point clouds in which the vertical structure of objects, such as trees, towers, and buildings, is well characterized. The point clouds are then voxelized to produce high-resolution volumes of lidar intensity values, and a 3D wavelet decomposition is computed. Verticalobject detection and recognition is performed in the wavelet domain using a multiresolution template matching approach. The method was tested using lidar waveform data and ground truth collected for project areas in Madison,Wisconsin. Preliminary results demonstrate the potential of the approach

    \u3cem\u3eKiobel\u3c/em\u3e, Unilateralism, and the Retreat from Extraterritoriality

    Get PDF

    Buoyancy Instabilities in a Weakly Collisional Intracluster Medium

    Full text link
    The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few tens of kpc, conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically-aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during the formation of a cold filament produces accompanying hot filaments, which can be searched for in deep Chandra observations of nearby cool-core clusters. In the case of the MTI, anisotropic viscosity maintains the coherence of magnetic-field lines over larger distances than in the inviscid case, providing a natural lower limit for the scale on which the field can fluctuate freely. In the nonlinear state, the magnetic field exhibits a folded structure in which the field-line curvature and field strength are anti-correlated.Comment: 20 pages, 20 figures, submitted to ApJ; Abstract abridge
    • …
    corecore