28 research outputs found

    ADCT-301, a Pyrrolobenzodiazepine (PBD) Dimer-Containing Antibody-Drug Conjugate (ADC) Targeting CD25-Expressing Hematological Malignancies

    Get PDF
    Despite the many advances in the treatment of hematologic malignancies over the past decade, outcomes in refractory lymphomas remain poor. One potential strategy in this patient population is the specific targeting of IL2R-α (CD25), which is overexpressed on many lymphoma and leukemic cells, using antibody–drug conjugates (ADC). ADCT-301 is an ADC composed of human IgG1 HuMax-TAC against CD25, stochastically conjugated through a dipeptide cleavable linker to a pyrrolobenzodiazepine (PBD) dimer warhead with a drug–antibody ratio (DAR) of 2.3. ADCT-301 binds human CD25 with picomolar affinity. ADCT-301 has highly potent and selective cytotoxicity against a panel of CD25-expressing human lymphoma cell lines. Once internalized, the released warhead binds in the DNA minor groove and exerts its potent cytotoxic action via the formation of DNA interstrand cross-links. A strong correlation between loss of viability and DNA cross-link formation is demonstrated. DNA damage persists, resulting in phosphorylation of histone H2AX, cell-cycle arrest in G2–M, and apoptosis. Bystander killing of CD25-negative cells by ADCT-301 is also observed. In vivo, a single dose of ADCT-301 results in dose-dependent and targeted antitumor activity against both subcutaneous and disseminated CD25-positive lymphoma models. In xenografts of Karpas 299, which expressed both CD25 and CD30, marked superiority over brentuximab vedotin (Adcetris) is observed. Dose-dependent increases in DNA cross-linking, γ-H2AX, and PBD payload staining were observed in tumors in vivo indicating a role as relevant pharmacodynamic assays. Together, these data support the clinical testing of this novel ADC in patients with CD25-expressing tumors

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds

    Full text link

    Late B Cell Depletion with a Human Anti-Human CD20 IgG1 kappa Monoclonal Antibody Halts the Development of Experimental Autoimmune Encephalomyelitis in Marmosets

    No full text
    Depletion of CD20(+) B cells has been related to reduced clinical activity in relapsing-remitting multiple sclerosis. The underlying mechanism is not understood, because serum IgG levels were unaltered by the treatment. We report the effect of late B cell depletion on cellular and humoral immune mechanisms in a preclinical multiple sclerosis model (i.e., experimental autoimmune encephalomyelitis [EAE] in the common marmoset). We used a novel human anti-human CD20 IgG1 kappa mAb (HuMab 7D8) that cross-reacts with marmoset CD20. EAE was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein (MOG) in CFA. After 21 d, B cells were depleted in seven monkeys by HuMab 7D8, and seven control monkeys received PBS. The Ab induced profound and long-lasting B cell depletion from PBMCs and lymphoid organs throughout the observation period of 106 d. Whereas all of the control monkeys developed clinically evident EAE, overt neurologic deficits were reduced substantially in three HuMab 7D8-treated monkeys, and four HuMab 7D8-treated monkeys remained completely asymptomatic. The effect of HuMab 7D8 was confirmed on magnetic resonance images, detecting only small lesions in HuMab 7D8-treated monkeys. The infusion of HuMab 7D8 arrested the progressive increase of anti-MOG IgG Abs. Although CD3(+) T cell numbers in lymphoid organs were increased, their proliferation and cytokine production were impaired significantly. Most notable were the substantially reduced mRNA levels of IL-7 and proinflammatory cytokines (IL-6, IL-17A, IFN-gamma, and TNF-alpha). In conclusion, B cell depletion prevents the development of clinical and pathological signs of EAE, which is associated with impaired activation of MOG-reactive T cells in lymphoid organs. The Journal of Immunology, 2010, 185: 3990-4003

    B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis

    No full text
    This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20. In vivo magnetic resonance imaging showed widespread brain white matter demyelination in control marmosets that was absent in CD20 antibody-treated marmosets. High-contrast post-mortem magnetic resonance imaging showed white matter lesions in 4 of the 7 antibody-treated marmosets, but these were significantly smaller than those in controls. The same technique revealed gray matter lesions in 5 control marmosets, but none in antibody-treated marmosets. Histologic analysis confirmed that inflammation, demyelination, and axonal damage were substantially reduced in brain, spinal cord, and optic nerves of CD20 antibody-treated marmosets. In conclusion, CD20-postive B-cell depletion by HuMab 7D8 profoundly reduced the development of both white and gray matter lesions in the marmoset CNS. These data underline the central role of B cells in CNS inflammatory-demyelinating disease
    corecore