359 research outputs found
Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory
Surface sensitive synchrotron-X-ray scattering studies reveal the
distributions of monovalent ions next to highly charged interfaces. A lipid
phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the
air-water interface, containing CsI at various concentrations. Using anomalous
reflectivity off and at the Cs resonance, we provide, for the first
time, spatial counterion distributions (Cs) next to the negatively charged
interface over a wide range of ionic concentrations. We argue that at low salt
concentrations and for pure water the enhanced concentration of hydroniums
HO at the interface leads to proton-transfer back to the phosphate
group by a high contact-potential, whereas high salt concentrations lower the
contact-potential resulting in proton-release and increased surface
charge-density. The experimental ionic distributions are in excellent agreement
with a renormalized-surface-charge Poisson-Boltzmann theory without fitting
parameters or additional assumptions
Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on Si(100) substrate
We report a detailed study of surface and interface properties of
pulsed-laser deposited NiMnSb films on Si (100) substrate as a function of film
thickness. As the thickness of films is reduced below 35 nm formation of a
porous layer is observed. Porosity in this layer increases with decrease in
NiMnSb film thickness. These morphological changes of the ultra thin films are
reflected in the interesting transport and magnetic properties of these films.
On the other hand, there are no influences of compositional in-homogeneity and
surface/interface roughness on the magnetic and transport properties of the
films.Comment: 13 pages, 7 figures, Submitted to Phys. Rev.
Asymmetric magnetization reversal in exchange-biased hysteresis loops
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M of polycrystalline Fe films exchange coupled to twinned (110) MnF2 or FeF2 antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e., the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop
Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.
Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.X-ray photoelectron spectra were obtained at the National Engineering and Physical Sciences Research Council (EPSRC) XPS Userās Service (NEXUS) at Newcastle University, an EPSRC midrange facility. NR data were obtained on the D17 instrument, and samples were treated in the laboratories of the Partnership for Soft Condensed Matter (PSCM) at the Institut Laue-Langevin. M.H.W. is grateful for funding from the Oppenheimer Trust.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.langmuir.5b0171
Bats, Bat Flies, and Fungi: Exploring Uncharted Waters
Bats serve as hosts to many lineages of arthropods, of which the blood-sucking bat flies (Nycteribiidae and Streblidae) are the most conspicuous. Bat flies can in turn be parasitized by Laboulbeniales fungi, which are biotrophs of arthropods. This is a second level of parasitism, hyperparasitism, a severely understudied phenomenon. Four genera of Laboulbeniales are known to occur on bat flies, Arthrorhynchus on Nycteribiidae in the Eastern Hemisphere, Dimeromyces on Old World Streblidae, Gloeandromyces on New World Streblidae, and Nycteromyces on Streblidae in both hemispheres. In this chapter, we introduce the different partners of the tripartite interaction and discuss their species diversity, ecology, and patterns of specificity. We cover parasite prevalence of Laboulbeniales fungi on bat flies, climatic effects on parasitism of bat flies, and coevolutionary patterns. One of the most important questions in this tripartite system is whether habitat has an influence on parasitism of bat flies by Laboulbeniales fungi. We hypothesize that habitat disturbance causes parasite prevalence to increase, in line with the ādilution effect.ā This can only be resolved based on large, non-biased datasets. To obtain these, we stress the importance of multitrophic field expeditions and international collaborations
Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?
Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome
- ā¦