24 research outputs found

    Instantaneous Bethe-Salpeter equation: improved analytical solution

    Full text link
    Studying the Bethe-Salpeter formalism for interactions instantaneous in the rest frame of the bound states described, we show that, for bound-state constituents of arbitrary masses, the mass of the ground state of a given spin may be calculated almost entirely analytically with high accuracy, without the (numerical) diagonalization of the matrix representation obtained by expansion of the solutions over a suitable set of basis states.Comment: 7 page

    Instantaneous Bethe-Salpeter equation: utmost analytic approach

    Get PDF
    The Bethe-Salpeter formalism in the instantaneous approximation for the interaction kernel entering into the Bethe-Salpeter equation represents a reasonable framework for the description of bound states within relativistic quantum field theory. In contrast to its further simplifications (like, for instance, the so-called reduced Salpeter equation), it allows also the consideration of bound states composed of "light" constituents. Every eigenvalue equation with solutions in some linear space may be (approximately) solved by conversion into an equivalent matrix eigenvalue problem. We demonstrate that the matrices arising in these representations of the instantaneous Bethe-Salpeter equation may be found, at least for a wide class of interactions, in an entirely algebraic manner. The advantages of having the involved matrices explicitly, i.e., not "contaminated" by errors induced by numerical computations, at one's disposal are obvious: problems like, for instance, questions of the stability of eigenvalues may be analyzed more rigorously; furthermore, for small matrix sizes the eigenvalues may even be calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.

    On the Lorentz structure of the confinement potential

    Full text link
    We investigate the Lorentz structure of the confinement potential through a study of the meson spectrum using Salpeter's instantaneous approximation to the Bethe-Salpeter equation. The equivalence between Salpeter's and a random-phase-approximation (RPA) equation enables one to employ the same techniques developed by Thouless, in his study of nuclear collective excitations, to test the stability of the solutions. The stablity analysis reveals the existence of imaginary eigenvalues for a confining potential that transforms as a Lorentz scalar. Moreover, we argue that the instability persists even for very large values of the constituent quark mass. In contrast, we find no evidence of imaginary eigenvalues for a timelike vector potential --- even for very small values of the constituent mass.Comment: 18 pages using RevTeX 3.0, with 8 figures available upon request, FSU-SCRI-94-1

    Bound q\bar q Systems in the Framework of the Different Versions of the 3-Dimensional Reductions of the Bethe-Salpeter Equation

    Full text link
    Bound q\bar q systems are studied in the framework of different 3-dimensional relativistic equations derived from the Bethe-Salpeter equation with the instantaneous kernel in the momentum space. Except the Salpeter equation, all these equations have a correct one-body limit when one of the constituent quark masses tends to infinity. The spin structure of the confining qq interaction potential is taken in the form xγ10γ20+(1x)I1I2x\gamma_{1}^{0}\gamma_{2}^{0}+(1-x)I_{1}I_{2}, with 0x10\leq x \leq 1. At first stage, the one-gluon-exchange potential is neglected and the confining potential is taken in the oscillator form. For the systems (u\bar s), (c\bar u), (c\bar s) and (u\bar u), (s\bar s) a comparative qualitative analysis of these equations is carried out for different values of the mixing parameter x and the confining potential strength parameter. We investigate: 1)the existence/nonexistence of stable solutions of these equations; 2) the parameter dependence of the general structure of the meson mass spectum and leptonic decay constants of pseudoscalar and vector mesons. It is demonstrated that none of the 3-dimensional equations considered in the present paper does simultaneously describe even general qualitative features of the whole mass spectrum of q\bar q systems. At the same time, these versions give an acceptable description of the meson leptonic decay characteristics.Comment: 22 pages, 5 postscript figures, LaTeX-file (revtex.sty

    The stability of the spectator, Dirac, and Salpeter equations for mesons

    Get PDF
    Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator, Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic kernel of these equations corresponds to a time-like vector exchange, a scalar exchange, or a linear combination of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations must describe stable states. We find that this requirement is not always satisfied, and give a complete discussion of the conditions under which the various equations give unphysical, unstable solutions

    On the validity of the reduced Salpeter equation

    Get PDF
    We adapt a general method to solve both the full and reduced Salpeter equations and systematically explore the conditions under which these two equations give equivalent results in meson dynamics. The effects of constituent mass, angular momentum state, type of interaction, and the nature of confinement are all considered in an effort to clearly delineate the range of validity of the reduced Salpeter approximations. We find that for J̸=0J\not{\hspace*{-1.0mm}=}0 the solutions are strikingly similar for all constituent masses. For zero angular momentum states the full and reduced Salpeter equations give different results for small quark mass especially with a large additive constant coordinate space potential. We also show that 1m\frac{1}{m} corrections to heavy-light energy levels can be accurately computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures included. Slightly revised version, to appear in Phys. Rev.

    On the instantaneous Bethe-Salpeter equation

    Get PDF
    We present a systematic algebraic and numerical investigation of the instantaneous Bethe-Salpeter equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component vector, and full vector types. We explore stability of the solutions and Regge behavior for each of these interactions, and conclude that only time component vector confinement leads to normal Regge structure and stable solutions.Comment: Latex (uses epsf macro), 26 pages of text, 12 postscript figures included

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηγγ\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    From the Feynman-Schwinger representation to the non-perturbative relativistic bound state interaction

    Get PDF
    We write the 4-point Green function in QCD in the Feynman-Schwinger representation and show that all the dynamical information are contained in the Wilson loop average. We work out the QED case in order to obtain the usual Bethe-Salpeter kernel. Finally we discuss the QCD case in the non-perturbative regime giving some insight in the nature of the interaction kernel.Comment: 25 pages, RevTex, 3 figures included, typos corrected, to appear in Phys. Rev. D 5

    Bethe--Salpeter equation in QCD

    Get PDF
    We extend to regular QCD the derivation of a confining qqˉ q \bar{q} Bethe--Salpeter equation previously given for the simplest model of scalar QCD in which quarks are treated as spinless particles. We start from the same assumptions on the Wilson loop integral already adopted in the derivation of a semirelativistic heavy quark potential. We show that, by standard approximations, an effective meson squared mass operator can be obtained from our BS kernel and that, from this, by 1m2{1\over m^2} expansion the corresponding Wilson loop potential can be reobtained, spin--dependent and velocity--dependent terms included. We also show that, on the contrary, neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte
    corecore