79 research outputs found

    A machine learning application in wine quality prediction

    Get PDF
    The wine business relies heavily on wine quality certification. The excellence of New Zealand Pinot noir wines is well-known worldwide. Our major goal in this research is to predict wine quality by generating synthetic data and construct a machine learning model based on this synthetic data and available experimental data collected from different and diverse regions across New Zealand. We utilised 18 Pinot noir wine samples with 54 different characteristics (7 physiochemical and 47 chemical features). We generated 1381 samples from 12 original samples using the SMOTE method, and six samples were preserved for model testing. The findings were compared using four distinct feature selection approaches. Important attributes (referred as essential variables) that were shown to be relevant in at least three feature selection methods were utilised to predict wine quality. Seven machine learning algorithms were trained and tested on a holdout original sample. Adaptive Boosting (AdaBoost) classifier showed 100% accuracy when trained and evaluated without feature selection, with feature selection (XGB), and with essential variables (features found important in at least three feature selection methods). In the presence of essential variables, the Random Forest (RF) classifier performance was increased

    Understanding quality of Pinot noir wine: Can modelling and machine learning pave the way?

    Get PDF
    Wine research has as its core components the disciplines of sensory analysis, viticulture, and oenology. Wine quality is an important concept for each of these disciplines, as well as for both wine producers and consumers. Any technique that could help producers to understand the nature of wine quality and how consumers perceive it, will help them to design even more effective marketing strategies. However, predicting a wine’s quality presents wine science modelling with a real challenge. We used sample data from Pinot noir wines from different regions of New Zealand to develop a mathematical model that can predict wine quality, and applied dimensional analysis with the Buckingham Pi theorem to determine the mathematical relationship among different chemical and physiochemical compounds. This mathematical model used perceived wine quality indices investigated by wine experts and industry professionals. Afterwards, machine learning algorithms are applied to validate the relevant sensory and chemical concepts. Judgments of wine intrinsic attributes, including overall quality, were made by wine professionals to two sets of 18 Pinot noir wines from New Zealand. This study develops a conceptual and mathematical framework to predict wine quality, and then validated these using a large dataset with machine learning approaches. It is worth noting that the predicted wine quality indices are in good agreement with the wine experts’ perceived quality ratings

    Iconic dishes, culture and identity: the Christmas pudding and its hundred years’ journey in the USA, Australia, New Zealand and India

    Get PDF
    Asserting that recipes are textual evidences reflecting the society that produced them, this article explores the evolution of the recipes of the iconic Christmas pudding in the United States, Australia, New Zealand and India between the mid-nineteenth and the mid-twentieth centuries. Combining a micro-analysis of the recipes and the cookbook that provided them with contemporary testimonies, the article observes the dynamics revealed by the preparation and consumption of the pudding in these different societies. The findings demonstrate the relevance of national iconic dishes to the study of notions of home, migration and colonization, as well as the development of a new society and identity. They reveal how the preservation, transformation and even rejection of a traditional dish can be representative of the complex and sometimes conflicting relationships between colonists, migrants or new citizens and the places they live in

    Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.

    Get PDF
    International audienceRare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∌3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    • 

    corecore