215 research outputs found

    Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa

    Get PDF
    Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide de novo synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP

    BRDF characterization of Al-coated thermoplastic polymer surfaces

    Get PDF
    In this paper, we present a combined morphological and optical characterization of aluminum-coated thermoplastic polymer surfaces. Flat plastic substrates, obtained by means of an injection molding process starting from plastic granules, were coated with ultra-thin aluminum films evaporated in vacuo, on top of which a silicon-based protective layer was plasma deposited in order to prevent oxidation of the metal reflective surface. Different sample treatments were studied to unravel the influence of substrate chemistry, substrate thickness, aluminum and protective layer thickness, and surface roughness on the actual optical reflectance properties. Bidirectional reflectance distribution function measurements, corroborated by surface morphological information obtained by means of atomic force microscopy, correlate reflectance characteristics with the root-mean-square surface roughness, providing evidence for\ua0the role of the substrate and the thin films\u2019 morphology. The results unravel information of interest within many applicative fields involving metal coating processes of plastic substrates as an example in the case of automotive lighting

    Transdermal administration of melatonin coupled to cryopass laser treatment as noninvasive therapy for prostate cancer

    Get PDF
    Melatonin, a pineal gland hormone, exerts oncostatic activity in several types of human cancer, including prostate, the most common neoplasia and the third most frequent cause of male cancer death in the developed world. The growth of androgen-sensitive LNCaP prostate cancer cells in mice is inhibited by 3 mg/kg/week melatonin (0.09 mg/mouse/week) delivered by i.p. injections, which is equivalent to a dose of 210 mg/week in humans. The aim of this study is to test an alternative noninvasive delivery route based on transdermal administration of melatonin onto the tumor area followed by cryo-pass-laser treatment. Two groups of immunodepressed mice were studied, one ( n = 10) subjected to 18 cryopass-laser therapy sessions and one ( n = 10) subjected to the same treatment without melatonin. These groups were compared with mice treated with i.p.-administered melatonin or vehicle with the same time schedule. We found that cryopass-laser treatment is as efficient as i.p. injections in reducing the growth of LNCaP tumor cells, affecting plasma melatonin and redox balance. Furthermore, both delivery routes share the same effects on the involved biochemical pathway driven by hypoxia-inducible factor 1 a . However, cryopass-laser, as used in the present experimental setup, is less efficient than i.p delivery route in increasing the melatonin content and Nrf2 expression in the tumor mass. We conclude that cryopass-laser treatment may have impact for melatonin-based therapy of prostate cancer, by delivering drugs transdermally without causing pain and targeting directly on the site of interest, thereby potentially making long-term treatments more sustainable

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur

    Inflammatory role of extracellular sphingolipids in Cystic Fibrosis

    Get PDF
    Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF

    Plasma mitomycin C concentrations determined by HPLC coupled to solid-phase extraction

    Get PDF
    The aim of this study was to set up a method for quantification of plasma mitomycin C (MMC) concentrations during intravesical chemotherapy delivered in the presence of local bladder hyperthermia (HT). In comparison with existing methods, this assay, characterized by relative simplicity and efficiency, resulted in the facilitation of performance with nondedicated instrumentation or nonspecialized staff. Purification from plasma matrix was carried out by solid-phase extraction under vaccuum. The purified drug was then collected directly into the vials of the HPLC autosampler. Chromatographic analysis was performed on a reversed-phase C18 column with water:acetonitrile (85:15 by vol) as the mobile phase and the UV detector set at 365 nm. The use of porfiromycin as internal standard provided a method with good within-day precision (CV 6.0% at 5 micrograms/L, n = 6), linearity (0.5-50 micrograms/L), and specificity. The lower limit of detection (< or = 0.5 microgram/L) proved to be suitable for plasma pharmacokinetics monitoring in two tested patients treated with MMC + HT for superficial bladder cancer

    Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation.

    Get PDF
    Background: After myocardial infarction, necrotic cardiomyocytes release damage-associated proteins that stimulate innate immune pathways and macrophage tissue infiltration, which drives inflammation and myocardial remodeling. Circulating inflammatory extracellular vesicles play a crucial role in the acute and chronic phases of ischemia, in terms of inflammatory progression. In this study, we hypothesize that the paracrine effect mediated by these vesicles induces direct cytotoxicity in cardiomyocytes. Thus, we examined whether reducing the generation of inflammatory vesicles within the first few hours after the ischemic event ameliorates cardiac outcome at short and long time points. Methods: Myocardial infarction was induced in rats that were previously injected intraperitoneally with a chemical inhibitor of extracellular-vesicle biogenesis. Heart global function was assessed by echocardiography performed at 7, 14 and 28 days after MI. Cardiac outcome was also evaluated by hemodynamic analysis at sacrifice. Cytotoxic effects of circulating EV were evaluated ex-vivo in a Langendorff, system by measuring the level of cardiac troponin I (cTnI) in the perfusate. Mechanisms undergoing cytotoxic effects of EV derived from pro-inflammatory macrophages (M1) were studied in-vitro in primary rat neonatal cardiomyocytes. Results: Inflammatory response following myocardial infarction dramatically increased the number of circulating extracellular vesicles carrying alarmins such as IL-1α, IL-1β and Rantes. Reducing the boost in inflammatory vesicles during the acute phase of ischemia resulted in preserved left ventricular ejection fraction in vivo. Hemodynamic analysis confirmed functional recovery by displaying higher velocity of left ventricular relaxation and improved contractility. When added to the perfusate of isolated hearts, post-infarction circulating vesicles induced significantly more cell death in adult cardiomyocytes, as assessed by cTnI release, comparing to circulating vesicles isolated from healthy (non-infarcted) rats. In vitro inflammatory extracellular vesicles induce cell death by driving nuclear translocation of NF-κB into nuclei of cardiomyocytes. Conclusion: Our data suggest that targeting circulating extracellular vesicles during the acute phase of myocardial infarction may offer an effective therapeutic approach to preserve function of ischemic heart

    Long and very-long-chain ceramides correlate with a more aggressive behavior in skull base chordoma patients

    Get PDF
    Background: Skull base chordomas are rare tumors arising from notochord. Sphingolipids analysis is a promising approach in molecular oncology, and it has never been applied in chordomas. Our aim is to investigate chordoma behavior and the role of ceramides. Methods: Ceramides were extracted and evaluated by liquid chromatography and mass spectrometry in a cohort of patients with a skull base chordoma. Clinical data were also collected and correlated with ceramide levels. Linear regression and correlation analyses were conducted. Results: Analyzing the association between ceramides level and MIB-1, total ceramides and dihydroceramides showed a strong association (r = 0.7257 and r = 0.6733, respectively) with MIB-1 staining (p = 0.0033 and p = 0.0083, respectively). Among the single ceramide species, Cer C24:1 (r = 0.8814, p &lt;= 0.0001), DHCer C24:1 (r = 0.8429, p = 0.0002) and DHCer C18:0 (r = 0.9426, p &lt;= 0.0001) showed a significant correlation with MIB-1. Conclusion: Our lipid analysis showed ceramides to be promising tumoral biomarkers in skull base chordomas. Long- and very-long-chain ceramides, such as Cer C24:1 and DHCer C24:1, may be related to a prolonged tumor survival and aggressiveness, and the understanding of their effective biological role will hopefully shed light on the mechanisms of chordoma radio-resistance, tendency to recur, and use of agents targeting ceramide metabolism
    corecore