13 research outputs found
Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio
In this paper, new results in random matrix theory are derived, which allow us to construct a shrinkage estimator of the global minimum variance (GMV) portfolio when the shrinkage target is a random object. More specifically, the shrinkage target is determined as the holding portfolio estimated from previous data. The theoretical findings are applied to develop theory for dynamic estimation of the GMV portfolio, where the new estimator of its weights is shrunk to the holding portfolio at each time of reconstruction. Both cases with and without overlapping samples are considered in the paper. The non-overlapping samples corresponds to the case when different data of the asset returns are used to construct the traditional estimator of the GMV portfolio weights and to determine the target portfolio, while the overlapping case allows intersections between the samples. The theoretical results are derived under weak assumptions imposed on the data-generating process. No specific distribution is assumed for the asset returns except from the assumption of finite 4+ɛ, ɛ >0, moments. Also, the population covariance matrix with unbounded largest eigenvalue can be considered. The performance of new trading strategies is investigated via an extensive simulation. Finally, the theoretical findings are implemented in an empirical illustration based on the returns on stocks included in the S&P 500 index.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Statistic
Recent advances in shrinkage-based high-dimensional inference
Recently, the shrinkage approach has increased its popularity in theoretical and applied statistics, especially, when point estimators for high-dimensional quantities have to be constructed. A shrinkage estimator is usually obtained by shrinking the sample estimator towards a deterministic target. This allows to reduce the high volatility that is commonly present in the sample estimator by introducing a bias such that the mean-square error of the shrinkage estimator becomes smaller than the one of the corresponding sample estimator. The procedure has shown great advantages especially in the high-dimensional problems where, in general case, the sample estimators are not consistent without imposing structural assumptions on model parameters. In this paper, we review the mostly used shrinkage estimators for the mean vector, covariance and precision matrices. The application in portfolio theory is provided where the weights of optimal portfolios are usually determined as functions of the mean vector and covariance matrix. Furthermore, a test theory on the mean–variance optimality of a given portfolio based on the shrinkage approach is presented as well.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Statistic
Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?
The main contribution of this paper is the derivation of the asymptotic behavior of the out-of-sample variance, the out-of-sample relative loss, and of their empirical counterparts in the high-dimensional setting, i.e., when both ratios p/n and p/m tend to some positive constants as m→∞ and n→∞, where p is the portfolio dimension, while n and m are the sample sizes from the in-sample and out-of-sample periods, respectively. The results are obtained for the traditional estimator of the global minimum variance (GMV) portfolio and for the two shrinkage estimators introduced by Frahm and Memmel (2010) and Bodnar et al. (2018). We show that the behavior of the empirical out-of-sample variance may be misleading in many practical situations, leading, for example, to a comparison of zeros. On the other hand, this will never happen with the empirical out-of-sample relative loss, which seems to provide a natural normalization of the out-of-sample variance in the high-dimensional setup. As a result, an important question arises if the out-of-sample variance can safely be used in practice for portfolios constructed from a large asset universe.Statistic
Optimal Shrinkage-Based Portfolio Selection in High Dimensions
In this article, we estimate the mean-variance portfolio in the high-dimensional case using the recent results from the theory of random matrices. We construct a linear shrinkage estimator which is distribution-free and is optimal in the sense of maximizing with probability one the asymptotic out-of-sample expected utility, that is, mean-variance objective function for different values of risk aversion coefficient which in particular leads to the maximization of the out-of-sample expected utility and to the minimization of the out-of-sample variance. One of the main features of our estimator is the inclusion of the estimation risk related to the sample mean vector into the high-dimensional portfolio optimization. The asymptotic properties of the new estimator are investigated when the number of assets p and the sample size n tend simultaneously to infinity such that p/n→c∈(0,+∞). The results are obtained under weak assumptions imposed on the distribution of the asset returns, namely the existence of the 4+ε moments is only required. Thereafter we perform numerical and empirical studies where the small- and large-sample behavior of the derived estimator is investigated. The suggested estimator shows significant improvements over the existent approaches including the nonlinear shrinkage estimator and the three-fund portfolio rule, especially when the portfolio dimension is larger than the sample size. Moreover, it is robust to deviations from normality.Statistic
Discriminant analysis in small and large dimensions
We study the distributional properties of the linear discriminant function under the assumption of normality by comparing two groups with the same covariance matrix but different mean vectors. A stochastic representation for the discriminant function coefficients is derived, which is then used to obtain their asymptotic distribution under the high-dimensional asymptotic regime. We investigate the performance of the classification analysis based on the discriminant function in both small and large dimensions. A stochastic representation is established, which allows one to compute the error rate in an efficient way. We further compare the calculated error rate with the optimal one obtained under the assumption that the covariance matrix and the two mean vectors are known. Finally, we present an analytical expression of the error rate calculated in the high-dimensional asymptotic regime. The finite-sample properties of the derived theoretical results are assessed via an extensive Monte Carlo study.AMS version of the paper (together with DOI) appears approximately a year laterStatistic
Tests for the Weights of the Global Minimum Variance Portfolio in a High-Dimensional Setting
In this paper, we construct two tests for the weights of the global minimum variance portfolio (GMVP) in a high-dimensional setting, namely, when the number of assets p depends on the sample size n such that p/n → c ϵ (0, 1) as n tends to infinity. In the case of a singular covariance matrix with rank equal to q we assume that q/n → c ϵ (0, 1) as n → ∞. The considered tests are based on the sample estimator and on the shrinkage estimator of the GMVP weights. We derive the asymptotic distributions of the test statistics under the null and alternative hypotheses. Moreover, we provide a simulation study where the power functions and the receiver operating characteristic curves of the proposed tests are compared with other existing approaches. We observe that the test based on the shrinkage estimator performs well even for values of c close to one.Statistic
Multi-period power utility optimization under stock return predictability
In this paper, we derive an analytical solution to the dynamic optimal portfolio choice problem in the case of an investor equipped with a power utility function of wealth. The results are established by solving the Bellman backward recursion under the assumption that the vector of asset returns follows a vector-autoregressive process with predictable variables. In an empirical study, the performance of the derived solution is compared with the one obtained by applying the numerical method. The comparison is performed in terms of the final wealth and its expected utility. It is documented that the application of the analytical solution to the multi-period portfolio choice problem leads to higher values of both the final wealth and the expected utility.Statistic
Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, for example the mean vector and the covariance matrix, are unknown and have to be estimated by using historical data on asset returns. Our new approach employs the Bayesian posterior predictive distribution which is the distribution of future realizations of asset returns given the observable sample. The parameters of posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. By contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step, and lead to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application not only gives the solution of the considered optimization problem, but also provides the posterior predictive distribution of the optimal portfolio return which can be used to construct a prediction interval. A Bayesian efficient frontier, the set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios which is known to be overoptimistic.Statistic
Bayesian inference of the multi-period optimal portfolio for an exponential utility
We consider the estimation of the multi-period optimal portfolio obtained by maximizing an exponential utility. Employing the Jeffreys non-informative prior and the conjugate informative prior, we derive stochastic representations for the optimal portfolio weights at each time point of portfolio reallocation. This provides a direct access not only to the posterior distribution of the portfolio weights but also to their point estimates together with uncertainties and their asymptotic distributions. Furthermore, we present the posterior predictive distribution for the investor's wealth at each time point of the investment period in terms of a stochastic representation for the future wealth realization. This in turn makes it possible to use quantile-based risk measures or to calculate the probability of default, i.e the probability of the investor wealth to become negative. We apply the suggested Bayesian approach to assess the uncertainty in the multi-period optimal portfolio by considering assets from the FTSE 100 in the weeks after the British referendum to leave the European Union. The behaviour of the novel portfolio estimation method in a precarious market situation is illustrated by calculating the predictive wealth, the risk associated with the holding portfolio, and the probability of default in each period.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Statistic
Sampling distributions of optimal portfolio weights and characteristics in small and large dimensions
Optimal portfolio selection problems are determined by the (unknown) parameters of the data generating process. If an investor wants to realize the position suggested by the optimal portfolios, he/she needs to estimate the unknown parameters and to account for the parameter uncertainty in the decision process. Most often, the parameters of interest are the population mean vector and the population covariance matrix of the asset return distribution. In this paper, we characterize the exact sampling distribution of the estimated optimal portfolio weights and their characteristics. This is done by deriving their sampling distribution by its stochastic representation. This approach possesses several advantages, e.g. (i) it determines the sampling distribution of the estimated optimal portfolio weights by expressions, which could be used to draw samples from this distribution efficiently; (ii) the application of the derived stochastic representation provides an easy way to obtain the asymptotic approximation of the sampling distribution. The later property is used to show that the high-dimensional asymptotic distribution of optimal portfolio weights is a multivariate normal and to determine its parameters. Moreover, a consistent estimator of optimal portfolio weights and their characteristics is derived under the high-dimensional settings. Via an extensive simulation study, we investigate the finite-sample performance of the derived asymptotic approximation and study its robustness to the violation of the model assumptions used in the derivation of the theoretical results. StatisticsDelft Institute of Applied Mathematic