30 research outputs found

    The utility of self-emulsifying oil formulation to improve the poor solubility of the anti HIV drug CSIC

    Get PDF
    Background: CSIC (5-chloro-3-phenylsulfonylindole-2-carboxamide), a non-nucleoside reverse transcriptase inhibitor (NNRTI) has not been advanced as a therapeutic anti-HIV candidate drug due to its low aqueous solubility and poor bioavailability.Objective: The objective of this work was to formulate CSIC into self-emulsifying oil formulations for the purpose of improving its aqueous solubility and evaluating in vitro antiretroviral activity.Methods: CSIC self-emulsifying oil formulations (SEFs) were formulated and evaluated for droplet size, zeta potential, polydispersity index (PDI), viscosity, emulsification time, stability and bioactivity.Results: Results showed significantly improved solubility of CSIC in the SEFs.The concentration of co-surfactant affected the droplet size, zeta potential and polydispersity index. In vitro bioactivity studies showed that the CSIC SEFs retained full anti-HIV activity.Conclusion: The in vitro data from this first attempt to formulate CSIC SEFs suggest that improvement on the aqueous solubility of CSIC through this delivery system may accentuate its antiretroviral effectiveness in vivo via bioavailability enhancement. The formulation is therefore intended as an oral anti-HIV agent for prophylactic and therapeutic uses. © 2013 Obitte et al.; licensee BioMed Central Ltd

    Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA

    Get PDF
    Background: The K65R substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is the major resistance mutation selected in patients treated with first-line antiretroviral tenofovir disoproxil fumarate (TDF). 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), is the most potent nucleoside analog RT inhibitor (NRTI) that unlike all approved NRTIs retains a 3'-hydroxyl group and has remarkable potency against wild-type (WT) and drug-resistant HIVs. EFdA acts primarily as a chain terminator by blocking translocation following its incorporation into the nascent DNA chain. EFdA is in preclinical development and its effect on clinically relevant drug resistant HIV strains is critically important for the design of optimal regimens prior to initiation of clinical trials.Results: Here we report that the K65R RT mutation causes hypersusceptibility to EFdA. Specifically, in single replication cycle experiments we found that EFdA blocks WT HIV ten times more efficiently than TDF. Under the same conditions K65R HIV was inhibited over 70 times more efficiently by EFdA than TDF. We determined the molecular mechanism of this hypersensitivity using enzymatic studies with WT and K65R RT. This substitution causes minor changes in the efficiency of EFdA incorporation with respect to the natural dATP substrate and also in the efficiency of RT translocation following incorporation of the inhibitor into the nascent DNA. However, a significant decrease in the excision efficiency of EFdA-MP from the 3' primer terminus appears to be the primary cause of increased susceptibility to the inhibitor. Notably, the effects of the mutation are DNA-sequence dependent.Conclusion: We have elucidated the mechanism of K65R HIV hypersusceptibility to EFdA. Our findings highlight the potential of EFdA to improve combination strategies against TDF-resistant HIV-1 strains. © 2013 Michailidis et al.; licensee BioMed Central Ltd

    A proline-to-histidine substitution at position 225 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) sensitizes HIV-1 RT to BHAP U-90152.

    No full text
    Two mutant virus strains in which the novel P225H mutation appeared in a V106A reverse transcriptase (RT)-mutated genetic background upon treatment of human immunodeficiency virus type 1 (HIV-1) with quinoxaline S-2720 were isolated. Surprisingly, the addition of the P225H mutation to the V106A RT mutant genetic background resensitized the V106A RT mutant virus to the non-nucleoside RT inhibitor (NNRTI) BHAP U-90152, but not to other NNRTIs. Construction of both recombinant viruses and recombinant RTs containing the V106A, P225H and V106A+P225H mutations revealed that P225H was indeed responsible for the marked potentiation of the antiviral activity of BHAP against the P225H single-mutant virus and the V106A+P225H double-mutant virus when compared to wild-type and V106A single-mutant viruses, respectively. An explanation for the markedly increased sensitivity of the P225H mutant HIV-1 RT to BHAP and not to the other NNRTIs was provided by the unique features of the X-ray structure of the RT-BHAP complex

    Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2′-deoxy-2′-fluoro-D-arabinose and 2′-deoxyribose nucleotides

    No full text
    Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2′-deoxy-2′-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC 50 values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2′-O-methyl oligonucleotide chimeras, i.e., PS-[2′meRNA-DNA-2′meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2′-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2′-fluoroarabino compounds was essentially unaffected. Indeed, a PS-FANA oligomer containing a single deoxyribonucleotide residue core retained significant antisense activity. These findings correlated exactly with the ability of the various chimeric antisense molecules to elicit RNase H degradation of the target RNA in vitro, and suggest that this mode of inhibition is likely the most important determinant for potent antisense activity.link_to_subscribed_fulltex

    Synthesis and biophysical properties of arabinonucleic acids (ANA): Circular dichroic spectra, melting temperatures, and ribonuclease H susceptibility of ANA·RNA hybrid duplexes

    No full text
    Arabinonucleic acid (ANA), the 2'-epimer of RNA, was synthesized from arabinonucleoside building blocks by conventional solid-phase phosphoramidite synthesis. In addition, the biochemical and physicochemical properties of ANA strands of mixed base composition were evaluated for the first time. ANA exhibit certain characteristics desirable for use as antisense agents. They form duplexes with complementary RNA, direct RNase H degradation of target RNA molecules, and display resistance to 3'-exonucleases. Since RNA does not elicit RNase H activity, our findings establish that the stereochemistry at C2' (ANA versus RNA) is a key determinant in the activation of the enzyme RNase H. Inversion of stereochemistry at C2' is most likely accompanied by a conformational change in the furanose sugar pucker from C3'-endo (RNA) to C2'-endo ('DNA-like') pucker (ANA) [Noronha and Damha (1998) Nucleic Acids Res. 26, 2665-2671; Venkateswarlu and Ferguson (1999) J. Am. Chem. Soc. 121, 5609-5610]. This produces ANA/RNA hybrids whose CD spectra (i.e., helical conformation) are more similar to the native DNA/RNA substrates than to those of the pure RNA/RNA duplex. These features, combined with the fact that ara- 2'OH groups project into the major groove of the helix (where they should not interfere with RNase H binding), help to explain the RNase H activity of ANA/RNA hybrids.link_to_subscribed_fulltex

    Development of a UC781 releasing polyethylene vinyl acetate vaginal ring

    No full text
    UC781 is potent, hydrophobic, non-nucleotide reverse transcriptase inhibitor (NNRTI) against the human immunodeficiency virus (HIV). UC781 is currently being investigated for use as a potential HIV microbicide. A study in rhesus macaques demonstrated that a 100-mg UC781-loaded silicone elastomer vaginal ring released limited amounts of UC781 into the vaginal fluid and tissue after 28 days. The reason for this was due to the hydrophobic nature and limited aqueous solubility of UC781. This study describes the manufacture of UC781-loaded polyethylene vinyl acetate (PEVA) vaginal rings, which have an improved in vitro release rate of UC781 when compared to UC781-loaded silicone elastomer vaginal rings. The study demonstrates that the UC781 in the PEVA rings is mostly in its amorphous form due to the rings being manufactured above UC781’s melting point. Furthermore, the rings do not show any signs of UC781 degradation, such as the presence of UC22
    corecore