116 research outputs found

    Documenting and Sharing the Seasonal Calendar for Erub Island, Torres Strait

    Get PDF
    Reading landscapes, seasons and environments has long been a tradition for Torres Strait Islanders through their close relationships with their islands and seas. Researchers funded by MTSRF Project 1.3.1 'Traditional knowledge systems and climate change in Torres Strait' worked with community Elders on Erub Island in the eastern group of islands in the Torres Strait to document the Elders' knowledge of seasonal patterns, including winds, wet and dry seasons, and also patterns in plant, animal and bird life. This report examines and synthesises this knowledge. The information varies from details on the migration and nesting patterns of key totem birds, to the movement of the Tagai star constellation, to the onset of wind patterns indicating certain planting or fishing cycles. The importance of documenting and transferring such knowledge is that it begins the task of generating interest among the younger generation to identify seasonal and environmental indicators in their landscape. This ability of Islanders to identify indicators and ‘read’ their land and sea country becomes important in maintaining culture, livelihoods and their surrounding environment. To this end, the seasonal calendar, which was assembled from the knowledge of four Erub Island Elders, was also developed into a large wooden mural at the local primary school. The school's students were involved in the creation and installation of the mural, and its contents will now form part of their teaching curriculum. It is hoped that by documenting, safeguarding and transferring this knowledge, it will remain alive and valuable

    Coastal land use planning in Ben Tre, Vietnam: constraints and recommendations

    Get PDF
    There have been few reviews of the effectiveness of the management of coastal mangrove protected areas and coastal land use planning at all levels in the Mekong Delta, Vietnam. Ben Tre province provides a good case study to enable the assessment of typical management practices in the provinces of the Delta. The study aims to critically review the current strategies for managing the Ben Tre coast and to consider what changes are required to ensure effective coastal management. The current coastal management strategies only dealt with symptoms and worked temporarily. There has been insufficient coordination in land use planning and coastal management among the Ben Tre government agencies, substantially contributing to mangrove loss and degradation. Natural regeneration of local mangrove species and secondary succession, although having been practically effective for protecting from coastal erosion, have not been used as coastal management measures. Three strategies, hold the existing defence line, managed realignment, and no active intervention, are recommended to assist in managing the Ben Tre coast for adaptation to climate change and sea level rise, and livelihood improvement

    The Effects of Ship Wakes in the Venice Lagoon and Implications for the Sustainability of Shipping in Coastal Waters

    Get PDF
    We analyse the impact of ship traffic in the vicinity of navigation channels in a wide shallow waterbody. The crucial hydrodynamic driver in this situation is the depression (Bernoulli) wake that may be transferred into a long-living solitary wave of depression over the shoals. The analysis considers navigation channels in the Venice Lagoon using a new large dataset of approximately 600 measured wake events associated to specific ships whose data are provided by the AIS system. Since the development of the modern industrial port and the opening of the Malamocco–Marghera channel in the late 1960s, growing pressure on the lagoon caused by ship traffic has raised concerns about its physical integrity and habitat survival. The transit of large vessels has been shown to have serious impacts on the shallow water areas adjacent to waterways. Depression wakes created by such vessels can reach significant dimensions (water level dropdown of up to 2.45 m at the channel margin), causing unusually large retreat rates of several sections of the shoreline and which may adversely affect the lagoon morphology. The wakes are analysed in relation to ship and morphological parameters. A formulation is proposed to predict wake amplitude on the basis of ship characteristics and motion

    Fast Shoreline Erosion Induced by Ship Wakes in a Coastal Lagoon: Field Evidence and Remote Sensing Analysis

    Get PDF
    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3˗4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968˗2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide

    Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    Get PDF
    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations

    Ship traffic and shoreline erosion in the Lagoon of Venice

    Get PDF
    A study based on the analysis of a historical sequence of aerial photographs and satellite images combined with in situ measurements revealed an unprecedented shoreline regression on the side of a major waterway in the Venice Lagoon, Italy. The study considered long and short-term recession rates caused by ship-induced depression wakes in an area which was reclaimed at the end of the ’60 for the expansion of the nearby Porto Marghera Industrial Zone and never used since then. The GIS analysis performed with the available imagery shows an average retreat of about 4 m yr-1 in the period between 1965 and 2015. Field measurements carried out between April 2014 and January 2015 also revealed that the shoreline’s regression still proceed with a speed comparable to the long-term average regardless of the distance from the navigation channel and is not constant through time. Periods of high water levels determined by astronomical tide or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat proceeds by collapse of slabs of the reclaimed muddy soil after erosion and removal of the underlying original salt marsh sediments and is a discontinuous process in time and space depending on morphology, intrinsic propertiesand vegetation cover of the artificial deposits. Digitalization of historical maps and new bathymetric surveys made in April 2015 allowed for the reconstruction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period between 1970 and 2015. The results of this study shows as ship-channel interactions can dominate the morphodynamics of a waterway and its margins and permitted to better understand how this part of the Venice Lagoon reacted to the pressure of human activities in the post-industrial period. Evaluation of the temporal and spatial variation of shoreline position is also crucial to predict future scenarios and manage the lagoon and its ecosystem services in the future

    Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Get PDF
    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C3 and C4 graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ13C27, δ13C29, δ13C31, δ13C27–31, δ2H27, δ2H29, and δ2H27–29) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ2H values were the strongest discriminators of plants originating from different functional groups, with trees (δ2H27–29 = − 208‰ to − 164‰) and C3 graminoids (δ2H27–29 = − 259‰ to − 221‰) providing the largest contrasts. The δ13C values provided strong discrimination between C3 (δ13C27–31 = − 37.5‰ to − 33.8‰) and C4 (δ13C27–31 = − 23.5‰ to − 23.1‰) plants, but neither δ13C nor δ2H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the apportionment of organic matter sources. Median organic matter contributions ranged from 22% to 52% for trees, 29% to 50% for herbaceous perennials, 17% to 34% for C3 graminoids and 3% to 7% for C4 graminoids. The results presented here clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach

    Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    Get PDF
    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3˗4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968˗2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide

    Integrating solutions to adapt cities for climate change

    Get PDF
    Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.Peer reviewe

    Coassembled nanostructured bioscaffold reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells

    Get PDF
    The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications is the nanostructured scaffolds formed by epitope presenting minimalist self-assembled peptides; these are bioactive on a cellular length scale, while presenting as an easily handled hydrogel. Here, we show that the assembly process can distribute an anti-inflammatory polysaccharide, fucoidan, localized to the nanofibers within the scaffold to create a biomaterial for cancer therapy. We show that it supports healthy cells, while inducing apoptosis in cancerous epithelial cells, as demonstrated by the significant down-regulation of gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications in local epithelial cancer immunotherapy and drug delivery
    • …
    corecore