4,015 research outputs found

    Viscosities of Solutions of Cadmium Halides in Aqueous Acetone

    Get PDF
    557-55

    A highly-ionized absorber as a new explanation for the spectral changes during dips from X-ray binaries

    Full text link
    Until now, the spectral changes observed from persistent to dipping intervals in dipping low-mass X-ray binaries were explained by invoking progressive and partial covering of an extended emission region. Here, we propose a novel and simpler way to explain these spectral changes, which does not require any partial covering and hence any extended corona, and further has the advantage of explaining self-consistently the spectral changes both in the continuum and the narrow absorption lines that are now revealed by XMM-Newton. In 4U 1323-62, we detect Fe XXV and Fe XXVI absorption lines and model them for the first time by including a complete photo-ionized absorber model rather than individual Gaussian profiles. We demonstrate that the spectral changes both in the continuum and the lines can be simply modeled by variations in the properties of the ionized absorber. From persistent to dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. In a recent work (see Diaz Trigo et al. in these proceedings), we show that our new approach can be successfully applied to all the other dipping sources that have been observed by XMM-Newton.Comment: 5 pages, 5 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56 (CI Cam) observed with XMM-Newton

    Get PDF
    We have observed the X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by an emission feature at ~6.5 keV. The spectrum can be fit using a partially covered power-law and Gaussian line model, in which the emission is almost completely covered (covering fraction of 0.98_{-0.06}^{+0.02}) by neutral material and is strongly absorbed with an N_H of (5_{-2}^{+3}) x 10^{23} atom cm^{-2}. This absorption is local and not interstellar. The Gaussian has a centroid energy of 6.4 +/- 0.1 keV, a width < 0.28 keV and an equivalent width of 940 ^{+650}_{-460} eV. It can be interpreted as fluorescent emission line from iron. Using this model and assuming XTE J0421+56 is at a distance of 5 kpc, its 0.5-10 keV luminosity is 3.5 x 10^{33} erg s^{-1}. The Optical Monitor onboard XMM-Newton indicates a V magnitude of 11.86 +/- 0.03. The spectra of X-ray transients in quiescence are normally modeled using advection dominated accretion flows, power-laws, or by the thermal emission from a neutron star surface. The strongly locally absorbed X-ray emission from XTE J0421+56 is therefore highly unusual and could result from the compact object being embedded within a dense circumstellar wind emitted from the supergiant B[e] companion star. The uncovered and unabsorbed component observed below 5 keV could be due either to X-ray emission from the supergiant B[e] star itself, or to the scattering of high-energy X-ray photons in a wind or ionized corona, such as observed in some low-mass X-ray binary systems.Comment: 8 pages, 4 postscript figures, accepted for publication in Astronomy and Astrophysic

    Precision Timing of Two Anomalous X-Ray Pulsars

    Get PDF
    We report on long-term X-ray timing of two anomalous X-ray pulsars, 1RXS J170849.0-400910 and 1E 2259+586, using the Rossi X-ray Timing Explorer. In monthly observations made over 1.4 yr and 2.6 yr for the two pulsars, respectively, we have obtained phase-coherent timing solutions which imply that these objects have been rotating with great stability throughout the course of our observations. For 1RXS J170849.0-400910, we find a rotation frequency of 0.0909169331(5) Hz and frequency derivative -15.687(4) x 10^(-14) Hz/s, for epoch MJD 51215.931. For 1E 2259+586, we find a rotation frequency of 0.1432880613(2)Hz, and frequency derivative -1.0026(7) x 10^(-14) Hz/s, for epoch MJD 51195.583. RMS phase residuals from these simple models are only about 0.01 cycles for both sources. We show that the frequency derivative for 1E 2259+586 is inconsistent with that inferred from incoherent frequency observations made over the last 20 yr. Our observations are consistent with the magnetar hypothesis and make binary accretion scenarios appear unlikely.Comment: 12 pages including 3 figures. To appear in ApJ Letter
    corecore