147 research outputs found

    Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops

    Full text link
    We investigate the solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram indicates two statistically significant time periods of about 16 and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16-second QPP were more pronounced in the thermal HXR emission and were observed both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP and the estimated physical parameters of magnetic loops in the flare region allow us to interpret the observations as follows. 1) In the impulsive phase energy was released and electrons were accelerated by successive acts with the average time period of about 36 seconds in different parts of two spatially separated, but interacting loop systems of the flare region. 2) The 36-second periodicity of energy release could be caused by the action of fast MHD oscillations in the loops connecting these flaring sites. 3) During the first explosive acts of energy release the MHD oscillations (most probably the sausage mode) with time period of 16 seconds were excited in one system of the flare loops. 4) These oscillations were maintained by the subsequent explosive acts of energy release in the impulsive phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure

    Quantum transport through STM-lifted single PTCDA molecules

    Full text link
    Using a scanning tunneling microscope we have measured the quantum conductance through a PTCDA molecule for different configurations of the tip-molecule-surface junction. A peculiar conductance resonance arises at the Fermi level for certain tip to surface distances. We have relaxed the molecular junction coordinates and calculated transport by means of the Landauer/Keldysh approach. The zero bias transmission calculated for fixed tip positions in lateral dimensions but different tip substrate distances show a clear shift and sharpening of the molecular chemisorption level on increasing the STM-surface distance, in agreement with experiment.Comment: accepted for publication in Applied Physics

    Eureka and beyond: mining's impact on African urbanisation

    Get PDF
    This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells

    Get PDF
    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell-mediated clearance of HIV-1-infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity-mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected-patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals

    Particles-vortex interactions and flow visualization in He4

    Full text link
    Recent experiments have demonstrated a remarkable progress in implementing and use of the Particle Image Velocimetry (PIV) and particle tracking techniques for the study of turbulence in He4. However, an interpretation of the experimental data in the superfluid phase requires understanding how the motion of tracer particles is affected by the two components, the viscous normal fluid and the inviscid superfluid. Of a particular importance is the problem of particle interactions with quantized vortex lines which may not only strongly affect the particle motion, but, under certain conditions, may even trap particles on quantized vortex cores. The article reviews recent theoretical, numerical, and experimental results in this rapidly developing area of research, putting critically together recent results, and solving apparent inconsistencies. Also discussed is a closely related technique of detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic

    Global Properties of Solar Flares

    Full text link

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
    corecore