233 research outputs found

    EXPLORING INTERPRETATIONS AND CONSEQUENCES OF MICHIGAN’S EXPUNGEMENT STATUTE THROUGH FORMAL MODELING AND ANALYSIS

    Get PDF
    Rules and regulations often come with a lack of clarity and the possibility of multiple interpretations. Without a clear understanding of what they are supposed to mean it becomes difficult to tell the people that these rules and regulations apply what to expect from them. This report will take a closer look at one of these sets of rules, the expungement laws in the state of Michigan. The alternative interpretations and possible contradictions are explored and their effects on real people are discussed. After an introduction providing a general understanding of the issue, a proposed solution to these problems will be looked at as well. Computer models can be used to explore the consequences and different outcomes from different interpretations of these laws. A model was written in Alloy in order to show the practicality of this method and was used to further explore the Michigan expungement laws

    Taxation - Real Estate Tax Exemption - Purely Public Charities

    Get PDF
    The Supreme Court of Pennsylvania held that a private nursing home that has a significant number of Medicare/ Medicaid patients qualifies as a purely public charity and is therefore exempt from payment of local real estate taxes. St. Margaret Seneca Place v. Board of Property Assessment, Appeals & Review, 640 A.2d 380 (Pa. 1994)

    Severe flooding and cause-specific hospitalization in the United States

    Full text link
    Flooding is one of the most disruptive and costliest climate-related disasters and presents an escalating threat to population health due to climate change and urbanization patterns. Previous studies have investigated the consequences of flood exposures on only a handful of health outcomes and focus on a single flood event or affected region. To address this gap, we conducted a nationwide, multi-decade analysis of the impacts of severe floods on a wide range of health outcomes in the United States by linking a novel satellite-based high-resolution flood exposure database with Medicare cause-specific hospitalization records over the period 2000- 2016. Using a self-matched study design with a distributed lag model, we examined how cause-specific hospitalization rates deviate from expected rates during and up to four weeks after severe flood exposure. Our results revealed that risk of hospitalization was consistently elevated during and for at least four weeks following severe flood exposure for nervous system diseases (3.5 %; 95 % confidence interval [CI]: 0.6 %, 6.4 %), skin and subcutaneous tissue diseases (3.4 %; 95 % CI: 0.3 %, 6.7 %), and injury and poisoning (1.5 %; 95 % CI: -0.07 %, 3.2 %). Increases in hospitalization rate for these causes, musculoskeletal system diseases, and mental health-related impacts varied based on proportion of Black residents in each ZIP Code. Our findings demonstrate the need for targeted preparedness strategies for hospital personnel before, during, and after severe flooding

    On the Lawrence–Doniach and Anisotropic Ginzburg–Landau Models for Layered Superconductors

    Get PDF
    The authors consider two models, the Lawrence-Doniach and the anisotropic Ginzburg-Landau models for layered superconductors such as the recently discovered high-temperature superconductors. A mathematical description of both models is given and existence results for their solution are derived. The authors then relate the two models in the sense that they show that as the layer spacing tends to zero, the Lawrence-Doniach model reduces to the anisotropic Ginzburg- Landau model. Finally, simplified versions of the models are derived that can be used to accurately simulate high-temperature superconductors

    A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters

    Get PDF
    The presence of Escherichia coli in environmental waters is considered as evidence of faecal contamination and is therefore commonly used as an indicator in both water quality and food safety analysis. The long period of time between sample collection and obtaining results from existing culture based methods means that contamination events may already impact public health by the time they are detected. The adoption of molecular based methods for E. coli could significantly reduce the time to detection. A new quantitative real-time PCR (qPCR) assay was developed to detect the ybbW gene sequence, which was found to be 100% exclusive and inclusive (specific and sensitive) for E. coli and directly compared for its ability to quantify E. coli in environmental waters against colony counts, quantitative real-time NASBA (qNASBA) targeting clpB and qPCR targeting uidA. Of the 87 E. coli strains tested, 100% were found to be ybbW positive, 94.2% were culture positive, 100% were clpB positive and 98.9% were uidA positive. The qPCR assays had a linear range of quantification over several orders of magnitude, and had high amplification efficiencies when using single isolates as a template. This compared favourably with qNASBA which showed poor linearity and amplification efficiency. When the assays were applied to environmental water samples, qNASBA was unable to reliably quantify E. coli while both qPCR assays were capable of predicting E. coli concentrations in environmental waters. This study highlights the inability of qNASBA targeting mRNA to quantify E. coli in environmental waters, and presents the first E. coli qPCR assay with 100% target exclusivity. The application of a highly exclusive and inclusive qPCR assay has the potential to allow water quality managers to reliably and rapidly detect and quantify E. coli and therefore take appropriate measures to reduce the risk to public health posed by faecal contamination

    Variation in Arabidopsis Flowering Time Associated with Cis-Regulatory Variation in CONSTANS

    Get PDF
    The onset of flowering, the change from vegetative to reproductive development, is a major life history transition in flowering plants. Recent work suggests that mutations in cis-regulatory mutations should play critical roles in the evolution of this (as well as other) important adaptive traits, but thus far there has been little evidence that directly links regulatory mutations to evolutionary change at the species level. While several genes have previously been shown to affect natural variation in flowering time in Arabidopsis thaliana, most either show protein-coding changes and/or are found at low frequency (\u3c5%). Here we identify and characterize natural variation in the cis-regulatory sequence in the transcription factor CONSTANS that underlies flowering time diversity in Arabidopsis. Mutation in this regulatory motif evolved recently and has spread to high frequency in Arabidopsis natural accessions, suggesting a role for these cis-regulatory changes in adaptive variation of flowering time

    Polytetrahedral Clusters

    Full text link
    By studying the structures of clusters bound by a model potential that favours polytetrahedral order, we find a previously unknown series of `magic numbers' (i.e. sizes of special stability) whose polytetrahedral structures are characterized by disclination networks that are analogous to hydrocarbons.Comment: 4 pages, 4 figure

    New Tetrahedral Global Minimum for the 98-atom Lennard-Jones Cluster

    Full text link
    A new atomic cluster structure corresponding to the global minimum of the 98-atom Lennard-Jones cluster has been found using a variant of the basin-hopping global optimization algorithm. The new structure has an unusual tetrahedral symmetry with an energy of -543.665361, which is 0.022404 lower than the previous putative global minimum. The new LJ_98 structure is of particular interest because its tetrahedral symmetry establishes it as one of only three types of exceptions to the general pattern of icosahedral structural motifs for optimal LJ microclusters. Similar to the other exceptions the global minimum is difficult to find because it is at the bottom of a narrow funnel which only becomes thermodynamically most stable at low temperature.Comment: 3 pages, 2 figures, revte

    Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: A case study of Globigerinoides ruber

    No full text
    B/Ca ratios in foraminifera have attracted considerable scientific attention as a proxy for past ocean carbonate system. However, the carbonate system controls on B/Ca ratios are not straightforward, with ?[ inline image] ([ inline image]in situ – [ inline image]at saturation) correlating best with B/Ca ratios in benthic foraminifera, rather than pH, inline image, or inline image (as a simple model of boron speciation in seawater and incorporation into CaCO3 would predict). Furthermore, culture experiments have shown that in planktic foraminifera properties such as salinity and [B]sw can have profound effects on B/Ca ratios beyond those predicted by simple partition coefficients. Here, we investigate the controls on B/Ca ratios in G. ruber via a combination of culture experiments and core-top measurements, and add to a growing body of evidence that suggests B/Ca ratios in symbiont-bearing foraminiferal carbonate are not a straightforward proxy for past seawater carbonate system conditions. We find that while B/Ca ratios in culture experiments covary with pH, in open ocean sediments this relationship is not seen. In fact, our B/Ca data correlate best with [ inline image] (a previously undocumented association) and in most regions, salinity. These findings might suggest a precipitation rate or crystallographic control on boron incorporation into foraminiferal calcite. Regardless, our results underscore the need for caution when attempting to interpret B/Ca records in terms of the ocean carbonate system, at the very least in the case of mixed-layer planktic foraminifera
    • …
    corecore