7,196 research outputs found
Rocket investigation of the auroral green line
Dissociative excitation and recombination reactions of atomic oxygen by auroral electrons, related to auroral green lin
Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques
We apply a number of statistical and machine learning techniques to classify
and rank gamma-ray sources from the Third Fermi Large Area Telescope (LAT)
Source Catalog (3FGL), according to their likelihood of falling into the two
major classes of gamma-ray emitters: pulsars (PSR) or Active Galactic Nuclei
(AGN). Using 1904 3FGL sources that have been identified/associated with AGN
(1738) and PSR (166), we train (using 70% of our sample) and test (using 30%)
our algorithms and find that the best overall accuracy (>96%) is obtained with
the Random Forest (RF) technique, while using a logistic regression (LR)
algorithm results in only marginally lower accuracy. We apply the same
techniques on a sub-sample of 142 known gamma-ray pulsars to classify them into
two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more,
the RF algorithm has the best overall accuracy (~90%), while a boosted LR
analysis comes a close second. We apply our two best models (RF and LR) to the
entire 3FGL catalog, providing predictions on the likely nature of {\it
unassociated} sources, including the likely type of pulsar (YNG or MSP). We
also use our predictions to shed light on the possible nature of some gamma-ray
sources with known associations (e.g. binaries, SNR/PWN). Finally, we provide a
list of plausible X-ray counterparts for some pulsar candidates, obtained using
Swift, Chandra, and XMM. The results of our study will be of interest for both
in-depth follow-up searches (e.g. pulsar) at various wavelengths, as well as
for broader population studies.Comment: Accepted by Ap
Ion composition and ion chemistry in an aurora
Auroral ion distribution and conversion of oxygen protons to nitric oxide proton
Oxygen isotope equilibrium in brachiopod shell fibres in the context of biological control
No abstract available
Bayesian analysis of Friedmannless cosmologies
Assuming only a homogeneous and isotropic universe and using both the 'Gold'
Supernova Type Ia sample of Riess et al. and the results from the Supernova
Legacy Survey, we calculate the Bayesian evidence of a range of different
parameterizations of the deceleration parameter. We consider both spatially
flat and curved models. Our results show that although there is strong evidence
in the data for an accelerating universe, there is little evidence that the
deceleration parameter varies with redshift.Comment: 7 pages, 3 figure
New directions in EEG measurement: an investigation into the fidelity of electrical potential sensor signals
Low frequency noise performance is the key indicator in determining the signal to noise ratio of a capacitively coupled sensor when used to acquire electroencephalogram signals. For this reason, a prototype Electric Potential Sensor device based on an auto-zero operational amplifier has been developed and evaluated. The absence of 1/f noise in these devices makes them ideal for use with signal frequencies ~10 Hz or less. The active electrodes are designed to be physically and electrically robust and chemically and biochemically inert. They are electrically insulated (anodized) and have diameters of 12 mm or 18 mm. In both cases, the sensors are housed in inert stainless steel machined housings with the electronics fabricated in surface mount components on a printed circuit board compatible with epoxy potting compounds. Potted sensors are designed to be immersed in alcohol for sterilization purposes. A comparative study was conducted with a commercial wet gel electrode system. These studies comprised measurements of both free running electroencephalogram and Event Related Potentials. Quality of the recorded electroencephalogram was assessed using three methods of inspection of raw signal, comparing signal to noise ratios, and Event Related Potentials noise analysis. A strictly comparable signal to noise ratio was observed and the overall conclusion from these comparative studies is that the noise performance of the new sensor is appropriate
Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays
We present new Chandra and XMM-Newton observations of a sample of eight
radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For
all eight pulsars we identify the X-ray counterpart, based on the X-ray source
localization and the best position obtained from Gamma-ray pulsar timing. For
PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind
nebula. Our new results consolidate the work from Marelli et al. 2011 and
confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of
radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while
the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars,
the distribution is more dispersed for the radio-loud ones, possibly showing
two peaks. We discuss possible implications of these different distributions
based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3
figures, 2 table
Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain
We study numerically the ground-state phase diagram of the
bilinear-biquadratic spin-1 chain near the ferromagnetic instability point,
where the existence of a gapped or gapless nondimerized quantum nematic phase
has been suggested. Our results, obtained by a highly accurate density-matrix
renormalization-group (DMRG) calculation are consistent with the view that the
order parameter characterizing the dimer phase vanishes only at the point where
the system becomes ferromagnetic, although the existence of a gapped or gapless
nondimerized phase in a very narrow parameter range between the ferromagnetic
and the dimerized regimes cannot be ruled out.Comment: 6 pages, 6 figure
Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD209458b
Four transits of the planet orbiting the star HD209458 were observed with the
STIS spectrograph on board HST. The wavelength domain (1180-1710A) includes HI
as well as CI, CII, CIV, NV, OI, SI, SiII, SiIII and SiIV lines. During the
transits, absorptions are detected in HI, OI and CII (5+/-2%, 13+/-4.5% and
7.5+/-3.5%, respectively). No absorptions are detected for other lines. The 5%
mean absorption over the whole HI Lyman alpha line is consistent with the
previous detection at higher resolution (Vidal-Madjar et al. 2003). The
absorption depths in OI and CII show that oxygen and carbon are present in the
extended upper atmosphere of HD209458b. These species must be carried out up to
the Roche lobe and beyond, most likely in a state of hydrodynamic escape.Comment: 6 pages, 4 figures, 1 table, submitted to ApJ Letters, revised
version with slightly revisited absorption depth estimate
- ā¦