662 research outputs found

    Population structure of multidrug resistant Klebsiella oxytoca within hospitals across the UK and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae.

    Get PDF
    Klebsiella oxytoca, a member of the Enterobacteriaceae, is a gram-negative pathogenic bacterium of environmental origin, which can cause infection in healthcare settings. Outbreaks of multidrug-resistant K. oxytoca infection have been increasingly reported in hospitalized patients. Despite the growing importance of this pathogen, there is limited knowledge about the population structure and epidemiology of antimicrobial resistant K. oxytoca. We investigated the population structure and genomic basis of antimicrobial resistance of 41 multidrug resistant K. oxytoca isolates recovered from bloodstream infections across the UK and Ireland. Our results show that K. oxytoca has a highly diverse population, which is composed of several distinct clades, and we identified one recent expansion of a clone within our dataset. Although the K. oxytoca genomes are clearly distinct from the genomes of a global collection of Klebsiella pneumoniae complex, pre-dominantly composed of K. pneumoniae, we found evidence for sharing of core genes through recombination, as well as the exchange of accessory antimicrobial resistance and virulence factor genes between the species. Our findings also suggest that the different K. oxytoca clades have acquired antimicrobial resistance and virulence factor genes independently. This highlights the clinical and therapeutic importance of genetic flexibility in K. oxytoca and the relevance of this in its role as an opportunistic pathogen

    16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice

    Get PDF
    Acknowledgements The authors acknowledge the assistance of Grietje Holtrop (RINH-BioSS) with the statistical analysis of the data and the Wellcome Trust Sanger Institute’s 454 pyrosequencing team for generating 16S rRNA gene data. AWW, PS and JP received core funding support from the Wellcome Trust [grant number 098051]. AWW, JCM, HJF and KPS are funded by the Scottish Government (SG-RESAS).Peer reviewedPublisher PD

    Genome-Based Analysis of Enterococcus faecium Bacteremia Associated with Recurrent and Mixed-Strain Infection.

    Get PDF
    Vancomycin-resistant Enterococcus faecium (VREfm) bloodstream infections are associated with high recurrence rates. This study used genome sequencing to accurately distinguish the frequency of relapse and reinfection in patients with recurrent E. faecium bacteremia and to investigate strain relatedness in patients with apparent VREfm and vancomycin-susceptible E. faecium (VSEfm) mixed infection. A retrospective study was performed at the Cambridge University Hospitals NHS Foundation Trust (CUH) between November 2006 and December 2012. We analyzed the genomes of 44 E. faecium isolates from 21 patients (26 VREfm isolates from 12 patients with recurrent bacteremia and 18 isolates from 9 patients with putative VREfm/VSEfm mixed infection). Phenotypic antibiotic susceptibility was determined using a Vitek2 instrument. Genomes were compared with those of a further 263 E. faecium isolates associated with bacteremia in patients at CUH over the same time period. Pairwise comparison of core genomes indicated that 10 (71%) episodes of recurrent VREfm bacteremia were due to reinfection with a new strain, with reinfection being more likely with increasing time between the two positive cultures. The majority (78%) of patients with a mixed VREfm and VSEfm infection had unrelated strains. More than half (59%) of study isolates were closely related to another isolate associated with bacteremia from CUH. This included 60% of isolates associated with reinfection, indicating acquisition in the hospital. This study provides the first high-resolution insights into recurrence and mixed infection by E. faecium and demonstrates that reinfection with a new strain, often acquired from the hospital, is a driver of recurrence

    Identification, variation and transcription of pneumococcal repeat sequences.

    Get PDF
    BACKGROUND: Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. RESULTS: Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. CONCLUSIONS: BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/

    Are commercial providers a viable option for clinical bacterial sequencing?

    Get PDF
    Bacterial whole-genome sequencing in the clinical setting has the potential to bring major improvements to infection control and clinical practice. Sequencing instruments are not currently available in the majority of routine microbiology laboratories worldwide, but an alternative is to use external sequencing providers. To foster discussion around this we investigated whether send-out services were a viable option. Four providers offering MiSeq sequencing were selected based on cost and evaluated based on the service provided and sequence data quality. DNA was prepared from five methicillin-resistant Staphylococcus aureus (MRSA) isolates, four of which were investigated during a previously published outbreak in the UK together with a reference MRSA isolate (ST22 HO 5096 0412). Cost of sequencing per isolate ranged from £155 to £342 and turnaround times from DNA postage to arrival of sequence data ranged from 12 to 63 days. Comparison of commercially generated genomes against the original sequence data demonstrated very high concordance, with no more than one single nucleotide polymorphism (SNP) difference on core genome mapping between the original sequences and the new sequence for all four providers. Multilocus sequence type could not be assigned based on assembly for the two cheapest sequence providers due to fragmented assemblies probably caused by a lower output of sequence data per isolate. Our results indicate that external providers returned highly accurate genome data, but that improvements are required in turnaround time to make this a viable option for use in clinical practice

    Phylogenetic relationships of the Wolbachia of nematodes and arthropods

    Get PDF
    Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes

    The Capsule Regulatory Network of Klebsiella pneumoniae Defined by density-TraDISort.

    Get PDF
    Klebsiella pneumoniae infections affect infants and the immunocompromised, and the recent emergence of hypervirulent and multidrug-resistant K. pneumoniae lineages is a critical health care concern. Hypervirulence in K. pneumoniae is mediated by several factors, including the overproduction of extracellular capsule. However, the full details of how K. pneumoniae capsule biosynthesis is achieved or regulated are not known. We have developed a robust and sensitive procedure to identify genes influencing capsule production, density-TraDISort, which combines density gradient centrifugation with transposon insertion sequencing. We have used this method to explore capsule regulation in two clinically relevant Klebsiella strains, K. pneumoniae NTUH-K2044 (capsule type K1) and K. pneumoniae ATCC 43816 (capsule type K2). We identified multiple genes required for full capsule production in K. pneumoniae, as well as putative suppressors of capsule in NTUH-K2044, and have validated the results of our screen with targeted knockout mutants. Further investigation of several of the K. pneumoniae capsule regulators identified-ArgR, MprA/KvrB, SlyA/KvrA, and the Sap ABC transporter-revealed effects on capsule amount and architecture, serum resistance, and virulence. We show that capsule production in K. pneumoniae is at the center of a complex regulatory network involving multiple global regulators and environmental cues and that the majority of capsule regulatory genes are located in the core genome. Overall, our findings expand our understanding of how capsule is regulated in this medically important pathogen and provide a technology that can be easily implemented to study capsule regulation in other bacterial species.IMPORTANCE Capsule production is essential for K. pneumoniae to cause infections, but its regulation and mechanism of synthesis are not fully understood in this organism. We have developed and applied a new method for genome-wide identification of capsule regulators. Using this method, many genes that positively or negatively affect capsule production in K. pneumoniae were identified, and we use these data to propose an integrated model for capsule regulation in this species. Several of the genes and biological processes identified have not previously been linked to capsule synthesis. We also show that the methods presented here can be applied to other species of capsulated bacteria, providing the opportunity to explore and compare capsule regulatory networks in other bacterial strains and species

    Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology.

    Get PDF
    Translating the Oxford Nanopore MinION sequencing technology into medical microbiology requires on-going analysis that keeps pace with technological improvements to the instrument and release of associated analysis software. Here, we use a multidrug-resistant Enterobacter kobei isolate as a model organism to compare open source software for the assembly of genome data, and relate this to the time taken to generate actionable information. Three software tools (PBcR, Canu and miniasm) were used to assemble MinION data and a fourth (SPAdes) was used to combine MinION and Illumina data to produce a hybrid assembly. All four had a similar number of contigs and were more contiguous than the assembly using Illumina data alone, with SPAdes producing a single chromosomal contig. Evaluation of the four assemblies to represent the genome structure revealed a single large inversion in the SPAdes assembly, which also incorrectly integrated a plasmid into the chromosomal contig. Almost 50 %, 80 % and 90 % of MinION pass reads were generated in the first 6, 9 and 12 h, respectively. Using data from the first 6 h alone led to a less accurate, fragmented assembly, but data from the first 9 or 12 h generated similar assemblies to that from 48 h sequencing. Assemblies were generated in 2 h using Canu, indicating that going from isolate to assembled data is possible in less than 48 h. MinION data identified that genes responsible for resistance were carried by two plasmids encoding resistance to carbapenem and to sulphonamides, rifampicin and aminoglycosides, respectively.Health Innovation Challenge Fund (WT098600, HICF-T5-342) (Department of Health, Wellcome Trust)This is the final version of the article. It first appeared from the Microbiology Society via http://dx.doi.org/10.1099/mgen.0.00008
    corecore