655 research outputs found

    Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    Get PDF
    and disposal, in whole or in part by or for the United States govern-ment is permitted. By acceptance of this article, the publisher and/or recipient ac-knowledges the U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright covering this paper. 1 Measurement of the d-d fusion neutron energy spectrum and variation of the peak width with plasma ion temperature W. A. Fisher*, S. H. Chen*, D. Gwinnt, R. R. Parkert We report a set of neutron spectrum measurements made at the Alcator C tokamak under ohmic heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 eV and 1050 eV have been ob-tained. The width for the 780 eV case is 64 +9,-11 keV and that of the 1050 eV case, 81 +10,-14 keV FWHM, corresponding to ion tempera-tures of 740 eV and 1190 eV respectively

    Fast neutron spectrometer for D-D fusion neutron measurements at the Alcator C tokamak

    Get PDF

    Polychromatic flow cytometry is more sensitive than microscopy in detecting small monoclonal plasma cell populations

    Get PDF
    Background There is an emerging role for flow cytometry (FC) in the assessment of small populations of plasma cells (PC). However, FC's utility has been questioned due to consistent underestimation of the percentage of PC compared to microscopy. Methods A retrospective study was performed on bone marrow samples analysed by 8-colour FC. Plasma cell populations were classified as polyclonal or monoclonal based on FC analysis. FC findings were compared with microscopy of aspirates, histology and immunohistochemistry of trephine biopsies, and immunofixation (IFX) of serum and/or urine. Results FC underestimated PC compared to aspirate and trephine microscopy. The 10% diagnostic cutoff for MM on aspirate microscopy corresponded to a 3.5% cutoff on FC. Abnormal plasma cell morphology by aspirate microscopy and clonality by FC correlated in 229 of 294 cases (78%). However, in 50 cases, FC demonstrated a monoclonal population but microscopy reported no abnormality. In 15 cases, abnormalities were reported by microscopy but not by FC. Clonality assessment by trephine microscopy and FC agreed in 251/280 cases (90%), but all 29 discordant cases were monoclonal by FC and not monoclonal by microscopy. These cases had fewer PC and proportionally more polyclonal PC, and when IFX detected a paraprotein, it had the same light chain as in the PC determined by FC. Conclusions FC was more sensitive in detecting monoclonal populations that were small or accompanied by polyclonal PC. This study supports the inclusion of FC in the evaluation of PC, especially in the assessment of small population

    Alpha scattering and capture reactions in the A = 7 system at low energies

    Get PDF
    Differential cross sections for 3^3He-α\alpha scattering were measured in the energy range up to 3 MeV. These data together with other available experimental results for 3^3He +α+ \alpha and 3^3H +α+ \alpha scattering were analyzed in the framework of the optical model using double-folded potentials. The optical potentials obtained were used to calculate the astrophysical S-factors of the capture reactions 3^3He(α,γ)7(\alpha,\gamma)^7Be and 3^3H(α,γ)7(\alpha,\gamma)^7Li, and the branching ratios for the transitions into the two final 7^7Be and 7^7Li bound states, respectively. For 3^3He(α,γ)7(\alpha,\gamma)^7Be excellent agreement between calculated and experimental data is obtained. For 3^3H(α,γ)7(\alpha,\gamma)^7Li a S(0)S(0) value has been found which is a factor of about 1.5 larger than the adopted value. For both capture reactions a similar branching ratio of R=σ(γ1)/σ(γ0)0.43R = \sigma(\gamma_1)/\sigma(\gamma_0) \approx 0.43 has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the authors, LaTeX with RevTeX, IK-TUW-Preprint 930540

    Spontaneous formation of flux concentrations in a stratified layer

    Full text link
    The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNS) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in formation of large-scale inhomogeneous magnetic structures from initial uniform magnetic field. Earlier investigations of this instability in DNS of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma beta are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L^2/eta_t, where eta_t is the turbulent diffusivity and L is the scale of the domain. DNS are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number.Comment: 14 pages, 8 figures, submitted to special issue "Advances of European Solar Physics" in Solar Physic

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure
    corecore