46,009 research outputs found
Common bearing material has highest fatigue life at moderate temperature
AISI 52100, a high carbon chromium steel, has the longest fatigue life of eight bearing materials tested. Fatigue lives of the other materials ranged from 7 to 78 percent of the fatigue life of AISI 52100 at a temperature of 340 K (150 F)
Emergent behaviour in a chlorophenol-mineralising three-tiered microbial `food web'
Anaerobic digestion enables the water industry to treat wastewater as a
resource for generating energy and recovering valuable by-products. The
complexity of the anaerobic digestion process has motivated the development of
complex models. However, this complexity makes it intractable to pin-point
stability and emergent behaviour. Here, the widely used Anaerobic Digestion
Model No. 1 (ADM1) has been reduced to its very backbone, a syntrophic
two-tiered microbial food chain and a slightly more complex three-tiered
microbial food web, with their stability analysed as function of the inflowing
substrate concentration and dilution rate. Parameterised for phenol and
chlorophenol degradation, steady-states were always stable and non-oscillatory.
Low input concentrations of chlorophenol were sufficient to maintain
chlorophenol- and phenol-degrading populations but resulted in poor conversion
and a hydrogen flux that was too low to sustain hydrogenotrophic methanogens.
The addition of hydrogen and phenol boosted the populations of all three
organisms, resulting in the counterintuitive phenomena that (i) the phenol
degraders were stimulated by adding hydrogen, even though hydrogen inhibits
phenol degradation, and (ii) the dechlorinators indirectly benefitted from
measures that stimulated their hydrogenotrophic competitors; both phenomena
hint at emergent behaviour.Comment: 19 pages, 8 figure
Intumescent Coatings as Fire Retardants
Fire-retardant paint, when activated by the heat of fire, reacts to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction
Evaluation of ball and roller bearings restored by grinding
The restoration by grinding of those rolling element bearings which are currently being discarded at aircaft engine and transmission overhaul is considered. Three bearing types were selected from the UH-1 helicopter engine and transmission for the pilot program. Groups of each of these bearings were visually and dimensionally inspected for suitability for restoration. A total of 250 bearings were restored by grinding. Of this number, 30 bearings from each type were endurance tested to a TBO of 1600 hours. No bearing failures occurred related to the restoration by grinding process. The two bearing failures which occurred were due to defective rolling elements and were typical of those which may occur in new bearings. The restorable component yield to the three groups was in excess of 90 percent
Flexural fatigue of hollow rolling elements
Hollow cylindrical bars were tested in the rolling-contact fatigue tester to determine the effects of material and outside diameter to inside diameter (OD/ID) ratios of 2.0, 1.6, 1.4, and 1.2 on fatigue failure mode and subsequent failure propagation. The range of applied loads with these OD/ID ratios resulted in maximum tangential tensile stresses ranging from 165 to 655 megapascals (24,000 to 95,000 psi) at the bore surface. Flexural failures of the hollow test bars occurred when this bore stress was 490 megapascals (71,000 psi) or greater with AISI 52100 hollow bars and 338 megapascals (49,000 psi) or greater with AISI M-50 hollow bars. Good correlation was obtained in relating the failures of these hollow bars with flexural failures of drilled balls from previously published full scale bearing tests
Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo
The possibility of the magnetic flux expulsion from the Galaxy in the
superbubble (SB) explosions, important for the Alpha-Omega dynamo, is
considered. Special emphasis is put on the investigation of the downsliding of
the matter from the top of the shell formed by the SB explosion which is able
to influence the kinematics of the shell. It is shown that either Galactic
gravity or the development of the Rayleigh-Taylor instabilities in the shell
limit the SB expansion, thus, making impossible magnetic flux expulsion. The
effect of the cosmic rays in the shell on the sliding is considered and it is
shown that it is negligible compared to Galactic gravity. Thus, the question of
possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure
Determination of Newton's gravitational constant, G, with improved precision Status report, 1 Apr. - 30 Sep. 1965
Apparatus and techniques for laboratory determination of Newtonian gravitation constan
Identification of the Beagle 2 lander on Mars
The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing
Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates
Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain
Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime
We present a general method for obtaining the exact static solutions and
collective excitation frequencies of a trapped Bose-Einstein condensate (BEC)
with dipolar atomic interactions in the Thomas-Fermi regime. The method
incorporates analytic expressions for the dipolar potential of an arbitrary
polynomial density profile, thereby reducing the problem of handling non-local
dipolar interactions to the solution of algebraic equations.
We comprehensively map out the static solutions and excitation modes,
including non-cylindrically symmetric traps, and also the case of negative
scattering length where dipolar interactions stabilize an otherwise unstable
condensate. The dynamical stability of the excitation modes gives insight into
the onset of collapse of a dipolar BEC. We find that global collapse is
consistently mediated by an anisotropic quadrupolar collective mode, although
there are two trapping regimes in which the BEC is stable against quadrupole
fluctuations even as the ratio of the dipolar to s-wave interactions becomes
infinite. Motivated by the possibility of fragmented BEC in a dipolar Bose gas
due to the partially attractive interactions, we pay special attention to the
scissors modes, which can provide a signature of superfluidity, and identify a
long-range restoring force which is peculiar to dipolar systems. As part of the
supporting material for this paper we provide the computer program used to make
the calculations, including a graphical user interface.Comment: 23 pages, 11 figure
- …