15,418 research outputs found

    Assisted assignment of automotive safety requirements

    Get PDF
    ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE

    A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration

    Full text link
    This article addresses the problem of two- and higher dimensional pattern matching, i.e. the identification of instances of a template within a larger signal space, which is a form of registration. Unlike traditional correlation, we aim at obtaining more selective matchings by considering more strict comparisons of gray-level intensity. In order to achieve fast matching, a nonlinear thresholded version of the fast Fourier transform is applied to a gray-level decomposition of the original 2D image. The potential of the method is substantiated with respect to real data involving the selective identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure

    Spatial differences between stars and brown dwarfs: a dynamical origin?

    Full text link
    We use NN-body simulations to compare the evolution of spatial distributions of stars and brown dwarfs in young star-forming regions. We use three different diagnostics; the ratio of stars to brown dwarfs as a function of distance from the region's centre, RSSR\mathcal{R}_{\rm SSR}, the local surface density of stars compared to brown dwarfs, ΣLDR\Sigma_{\rm LDR}, and we compare the global spatial distributions using the ΛMSR\Lambda_{\rm MSR} method. From a suite of twenty initially statistically identical simulations, 6/20 attain RSSR<<1\mathcal{R}_{\rm SSR} << 1 andand ΣLDR<<1\Sigma_{\rm LDR} << 1 andand ΛMSR<<1\Lambda_{\rm MSR} << 1, indicating that dynamical interactions could be responsible for observed differences in the spatial distributions of stars and brown dwarfs in star-forming regions. However, many simulations also display apparently contradictory results - for example, in some cases the brown dwarfs have much lower local densities than stars (ΣLDR<<1\Sigma_{\rm LDR} << 1), but their global spatial distributions are indistinguishable (ΛMSR=1\Lambda_{\rm MSR} = 1) and the relative proportion of stars and brown dwarfs remains constant across the region (RSSR=1\mathcal{R}_{\rm SSR} = 1). Our results suggest that extreme caution should be exercised when interpreting any observed difference in the spatial distribution of stars and brown dwarfs, and that a much larger observational sample of regions/clusters (with complete mass functions) is necessary to investigate whether or not brown dwarfs form through similar mechanisms to stars.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Automatic sorting of point pattern sets using Minkowski Functionals

    Get PDF
    Point pattern sets arise in many different areas of physical, biological, and applied research, representing many random realizations of underlying pattern formation mechanisms. These pattern sets can be heterogeneous with respect to underlying spatial processes, which may not be visually distinguishable. This heterogeneity can be elucidated by looking at statistical measures of the patterns sets and using these measures to divide the pattern set into distinct groups representing like spatial processes. We introduce here a numerical procedure for sorting point pattern sets into spatially homogeneous groups using Functional Principal Component Analysis (FPCA) applied to the approximated Minkowski functionals of each pattern. We demonstrate that this procedure correctly sorts pattern sets into similar groups both when the patterns are drawn from similar processes and when the 2nd-order characteristics of the pattern are identical. We highlight this routine for distinguishing the molecular patterning of fluorescently labeled cell membrane proteins, a subject of much interest in studies investigating complex spatial signaling patterns involved in the human immune response.Comment: 11 pages, 6 figures, submitted to Physical Review E (05 March 2013

    Conditional sampling of a high PĂ©clet number turbulent plume and the implications for entrainment

    Get PDF
    We present simultaneous two-dimensional velocity and scalar measurements on a central vertical plane in an axisymmetric pure turbulent plume. We use an edge-detection algorithm to determine the edge of the plume, and compare the data obtained in both a fixed Eulerian frame and a frame relative to local coordinates defined in terms of the instantaneous plume edge. In an Eulerian frame we observe that the time-averaged distributions of vertical and horizontal velocity are self-similar, the vertical velocity being well represented by a Gaussian distribution. We condition these measurements on whether fluid is inside or outside of the plume, and whether fluid inside is mixed plume fluid or engulfed ambient fluid. We find that, on average, 5 % of the total vertical volume transport occurs outside the plume and this figure rises to nearly 14 % at heights between large-scale coherent structures. We show that the fluxes of engulfed fluid within the plume envelope are slightly larger than the vertical transport outside the plume – indicating that ambient fluid is engulfed into the plume envelope before being nibbled across the turbulent/non-turbulent interface (TNTI) and then ultimately irreversibly mixed. Our new measurements in the plume coordinate (following the meandering fluctuating plume) show the flow within the plume and in the nearby ambient fluid is strongly influenced by whether an eddy is present locally within the plume, or absent. When an eddy is present and the plume is wide, the vertical velocities near the plume edge are small and hence all vertical transport is inside the plume. In regions where the plume is narrow and there is no eddy, large vertical velocities and hence transport are observed outside the plume suggesting that pressure forces associated with the eddies accelerate ambient fluid which is then engulfed into the plume. Finally, we show that observing significant vertical velocities beyond the scalar edge of the plume does not suggest that the characteristic width of the velocity distribution is greater than that of the scalar field; on the contrary, we show our observations to be consistent with a buoyancy distribution that is up to 20 % wider than that of the velocity. Measurements in the plume coordinates show that the mixing of momentum across the plume results in a distribution for which the differential entropy is close to maximal and the mixing of momentum is uninhibited (i.e. not bounded) by the TNTI of the plume. Furthermore, our measurements suggest that the scalar mixing across the plume may also result in a distribution for which the differential entropy is close to maximal but, in contrast to the momentum, the scalar mixing is strictly bounded by the plume edge.This work was supported, in part, by the Leverhulme Trust Research Programme Grant RP2013-SL-008, the EPSRC Programme Grant EP/K034529/1, the Gulf of Mexico Research Institute and by iCASE awards from NERC and the UK Met Office (RG82562) and EPSRC and Arup (RG83017)

    Test beam Characterizations of 3D Silicon Pixel detectors

    Full text link
    3D silicon detectors are characterized by cylindrical electrodes perpendicular to the surface and penetrating into the bulk material in contrast to standard Si detectors with planar electrodes on its top and bottom. This geometry renders them particularly interesting to be used in environments where standard silicon detectors have limitations, such as for example the radiation environment expected in an LHC upgrade. For the first time, several 3D sensors were assembled as hybrid pixel detectors using the ATLAS-pixel front-end chip and readout electronics. Devices with different electrode configurations have been characterized in a 100 GeV pion beam at the CERN SPS. Here we report results on unirradiated devices with three 3D electrodes per 50 x 400 um2 pixel area. Full charge collection is obtained already with comparatively low bias voltages around 10 V. Spatial resolution with binary readout is obtained as expected from the cell dimensions. Efficiencies of 95.9% +- 0.1 % for tracks parallel to the electrodes and of 99.9% +- 0.1 % at 15 degrees are measured. The homogeneity of the efficiency over the pixel area and charge sharing are characterized.Comment: 5 pages, 7 figure

    Visualizing the Formation of the Kondo Lattice and the Hidden Order in URu2Si2

    Full text link
    Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that emerge from the uranium f states in URu2Si2. We find that as the temperature is lowered, partial screening of the f electrons' spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states

    A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the manuscript and its Supporting Information files.Geobacillus thermoglucosidans DSM2542 is an industrially important microbe, however the complex nutritional requirements of Geobacilli confound metabolic engineering efforts. Previous studies have utilised semi-defined media recipes that contain complex, undefined, biologically derived nutrients which have unknown ingredients that cannot be quantified during metabolic profiling. This study used design of experiments to investigate how individual nutrients and interactions between these nutrients contribute to growth. A mathematically derived defined medium has been formulated that has been shown to robustly support growth of G. thermoglucosidans in two different environmental conditions (96-well plate and shake flask) and with a variety of lignocellulose-based carbohydrates. This enabled the catabolism of industrially relevant carbohydrates to be investigated.Shell Global Solutions BVUniversity of Exete

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously
    • 

    corecore