15,418 research outputs found
Assisted assignment of automotive safety requirements
ISO 26262, a functional-safety standard, uses Automotive Safety Integrity Levels (ASILs) to assign safety requirements to automotive-system elements. System designers initially assign ASILs to system-level hazards and then allocate them to elements of the refined system architecture. Through ASIL decomposition, designers can divide a function & rsquo;s safety requirements among multiple components. However, in practice, manual ASIL decomposition is difficult and produces varying results. To overcome this problem, a new tool automates ASIL allocation and decomposition. It supports the system and software engineering life cycle by enabling users to efficiently allocate safety requirements regarding systematic failures in the design of critical embedded computer systems. The tool is applicable to industries with a similar concept of safety integrity levels. © 1984-2012 IEEE
A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration
This article addresses the problem of two- and higher dimensional pattern
matching, i.e. the identification of instances of a template within a larger
signal space, which is a form of registration. Unlike traditional correlation,
we aim at obtaining more selective matchings by considering more strict
comparisons of gray-level intensity. In order to achieve fast matching, a
nonlinear thresholded version of the fast Fourier transform is applied to a
gray-level decomposition of the original 2D image. The potential of the method
is substantiated with respect to real data involving the selective
identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure
Spatial differences between stars and brown dwarfs: a dynamical origin?
We use -body simulations to compare the evolution of spatial distributions
of stars and brown dwarfs in young star-forming regions. We use three different
diagnostics; the ratio of stars to brown dwarfs as a function of distance from
the region's centre, , the local surface density of
stars compared to brown dwarfs, , and we compare the global
spatial distributions using the method. From a suite of
twenty initially statistically identical simulations, 6/20 attain
, indicating that dynamical interactions could be responsible for
observed differences in the spatial distributions of stars and brown dwarfs in
star-forming regions. However, many simulations also display apparently
contradictory results - for example, in some cases the brown dwarfs have much
lower local densities than stars (), but their global
spatial distributions are indistinguishable () and the
relative proportion of stars and brown dwarfs remains constant across the
region (). Our results suggest that extreme caution
should be exercised when interpreting any observed difference in the spatial
distribution of stars and brown dwarfs, and that a much larger observational
sample of regions/clusters (with complete mass functions) is necessary to
investigate whether or not brown dwarfs form through similar mechanisms to
stars.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Automatic sorting of point pattern sets using Minkowski Functionals
Point pattern sets arise in many different areas of physical, biological, and
applied research, representing many random realizations of underlying pattern
formation mechanisms. These pattern sets can be heterogeneous with respect to
underlying spatial processes, which may not be visually distinguishable. This
heterogeneity can be elucidated by looking at statistical measures of the
patterns sets and using these measures to divide the pattern set into distinct
groups representing like spatial processes. We introduce here a numerical
procedure for sorting point pattern sets into spatially homogeneous groups
using Functional Principal Component Analysis (FPCA) applied to the
approximated Minkowski functionals of each pattern. We demonstrate that this
procedure correctly sorts pattern sets into similar groups both when the
patterns are drawn from similar processes and when the 2nd-order
characteristics of the pattern are identical. We highlight this routine for
distinguishing the molecular patterning of fluorescently labeled cell membrane
proteins, a subject of much interest in studies investigating complex spatial
signaling patterns involved in the human immune response.Comment: 11 pages, 6 figures, submitted to Physical Review E (05 March 2013
A comparison of entrainment in turbulent line plumes adjacent to and distant from a vertical wall
EPSRC (R008957/1)
EPSRC (K034529/1)
ERC (742480
Conditional sampling of a high PĂ©clet number turbulent plume and the implications for entrainment
We present simultaneous two-dimensional velocity and scalar measurements on a central vertical plane in an axisymmetric pure turbulent plume. We use an edge-detection algorithm to determine the edge of the plume, and compare the data obtained in both a fixed Eulerian frame and a frame relative to local coordinates defined in terms of the instantaneous plume edge. In an Eulerian frame we observe that the time-averaged distributions of vertical and horizontal velocity are self-similar, the vertical velocity being well represented by a Gaussian distribution. We condition these measurements on whether fluid is inside or outside of the plume, and whether fluid inside is mixed plume fluid or engulfed ambient fluid. We find that, on average, 5 % of the total vertical volume transport occurs outside the plume and this figure rises to nearly 14 % at heights between large-scale coherent structures. We show that the fluxes of engulfed fluid within the plume envelope are slightly larger than the vertical transport outside the plume â indicating that ambient fluid is engulfed into the plume envelope before being nibbled across the turbulent/non-turbulent interface (TNTI) and then ultimately irreversibly mixed. Our new measurements in the plume coordinate (following the meandering fluctuating plume) show the flow within the plume and in the nearby ambient fluid is strongly influenced by whether an eddy is present locally within the plume, or absent. When an eddy is present and the plume is wide, the vertical velocities near the plume edge are small and hence all vertical transport is inside the plume. In regions where the plume is narrow and there is no eddy, large vertical velocities and hence transport are observed outside the plume suggesting that pressure forces associated with the eddies accelerate ambient fluid which is then engulfed into the plume. Finally, we show that observing significant vertical velocities beyond the scalar edge of the plume does not suggest that the characteristic width of the velocity distribution is greater than that of the scalar field; on the contrary, we show our observations to be consistent with a buoyancy distribution that is up to 20 % wider than that of the velocity. Measurements in the plume coordinates show that the mixing of momentum across the plume results in a distribution for which the differential entropy is close to maximal and the mixing of momentum is uninhibited (i.e. not bounded) by the TNTI of the plume. Furthermore, our measurements suggest that the scalar mixing across the plume may also result in a distribution for which the differential entropy is close to maximal but, in contrast to the momentum, the scalar mixing is strictly bounded by the plume edge.This work was supported, in part, by the Leverhulme Trust Research Programme Grant RP2013-SL-008, the EPSRC Programme Grant EP/K034529/1, the Gulf of Mexico Research Institute and by iCASE awards from NERC and the UK Met Office (RG82562) and EPSRC and Arup (RG83017)
Test beam Characterizations of 3D Silicon Pixel detectors
3D silicon detectors are characterized by cylindrical electrodes
perpendicular to the surface and penetrating into the bulk material in contrast
to standard Si detectors with planar electrodes on its top and bottom. This
geometry renders them particularly interesting to be used in environments where
standard silicon detectors have limitations, such as for example the radiation
environment expected in an LHC upgrade. For the first time, several 3D sensors
were assembled as hybrid pixel detectors using the ATLAS-pixel front-end chip
and readout electronics. Devices with different electrode configurations have
been characterized in a 100 GeV pion beam at the CERN SPS. Here we report
results on unirradiated devices with three 3D electrodes per 50 x 400 um2 pixel
area. Full charge collection is obtained already with comparatively low bias
voltages around 10 V. Spatial resolution with binary readout is obtained as
expected from the cell dimensions. Efficiencies of 95.9% +- 0.1 % for tracks
parallel to the electrodes and of 99.9% +- 0.1 % at 15 degrees are measured.
The homogeneity of the efficiency over the pixel area and charge sharing are
characterized.Comment: 5 pages, 7 figure
Visualizing the Formation of the Kondo Lattice and the Hidden Order in URu2Si2
Heavy electronic states originating from the f atomic orbitals underlie a
rich variety of quantum phases of matter. We use atomic scale imaging and
spectroscopy with the scanning tunneling microscope (STM) to examine the novel
electronic states that emerge from the uranium f states in URu2Si2. We find
that as the temperature is lowered, partial screening of the f electrons' spins
gives rise to a spatially modulated Kondo-Fano resonance that is maximal
between the surface U atoms. At T=17.5 K, URu2Si2 is known to undergo a 2nd
order phase transition from the Kondo lattice state into a phase with a hidden
order parameter. From tunneling spectroscopy, we identify a spatially
modulated, bias-asymmetric energy gap with a mean-field temperature dependence
that develops in the hidden order state. Spectroscopic imaging further reveals
a spatial correlation between the hidden order gap and the Kondo resonance,
suggesting that the two phenomena involve the same electronic states
A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes
This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the manuscript and its Supporting Information files.Geobacillus thermoglucosidans DSM2542 is an industrially important microbe, however the complex nutritional requirements of Geobacilli confound metabolic engineering efforts. Previous studies have utilised semi-defined media recipes that contain complex, undefined, biologically derived nutrients which have unknown ingredients that cannot be quantified during metabolic profiling. This study used design of experiments to investigate how individual nutrients and interactions between these nutrients contribute to growth. A mathematically derived defined medium has been formulated that has been shown to robustly support growth of G. thermoglucosidans in two different environmental conditions (96-well plate and shake flask) and with a variety of lignocellulose-based carbohydrates. This enabled the catabolism of industrially relevant carbohydrates to be investigated.Shell Global Solutions BVUniversity of Exete
Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop
This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressureâvelocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously
- âŠ