32,993 research outputs found
Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates
The possibility of effectively inverting the sign of the dipole-dipole
interaction, by fast rotation of the dipole polarization, is examined within a
harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on
the stationary states in the Thomas-Fermi limit, in the corotating frame, as
well as direct numerical simulations in the Thomas-Fermi regime, explicitly
accounting for the rotating polarization. The condensate is found to be
inherently unstable due to the dynamical instability of collective modes. This
ultimately prevents the realization of robust and long-lived rotationally tuned
states. Our findings have major implications for experimentally accessing this
regime.Comment: 9 pages with 5 figure
Recommended from our members
CamGrid: Experiences in constructing a university-wide, Condor-based grid at the University of Cambridge
Proceedings of the 2004 UK e-Science All Hands Meeting, 31st August - 3rd September, Nottingham UKIn this article we describe recent work done in building a university-wide grid at the University of Cambridge based on the Condor middleware [1]. Once the issues of stakeholder concerns (e.g.
security policies) and technical problems (e.g. firewalls and private IP addresses) have been taken into account, a solution based on two separate Condor environments was decided on. The first of these is a single large pool administered centrally by the University Computing Service (UCS) and
the second a federated service of flocked Condor pools belonging to various departments and run over a Virtual Private Network (VPN). We report on the current status of this ongoing work
Relation Between Einstein And Quantum Field Equations
We show that there exists a choice of scalar field modes, such that the
evolution of the quantum field in the zero-mass and large-mass limits is
consistent with the Einstein equations for the background geometry. This choice
of modes is also consistent with zero production of these particles and thus
corresponds to a preferred vacuum state preserved by the evolution. In the
zero-mass limit, we find that the quantum field equation implies the Einstein
equation for the scale factor of a radiation-dominated universe; in the
large-mass case, it implies the corresponding Einstein equation for a
matter-dominated universe. Conversely, if the classical radiation-dominated or
matter-dominated Einstein equations hold, there is no production of scalar
particles in the zero and large mass limits, respectively. The suppression of
particle production in the large mass limit is over and above the expected
suppression at large mass. Our results hold for a certain class of conformally
ultrastatic background geometries and therefore generalize previous results by
one of us for spatially flat Robertson-Walker background geometries. In these
geometries, we find that the temporal part of the graviton equations reduces to
the temporal equation for a massless minimally coupled scalar field, and
therefore the results for massless particle production hold also for gravitons.
Within the class of modes we study, we also find that the requirement of zero
production of massless scalar particles is not consistent with a non-zero
cosmological constant. Possible implications are discussed.Comment: Latex, 24 pages. Minor changes in text from original versio
The Lights Out Game on Directed Graphs
We study a version of the lights out game played on directed graphs. For a
digraph , we begin with a labeling of with elements of
for . When a vertex is toggled, the labels of and any vertex
that dominates are increased by 1 mod . The game is won when each vertex
has label 0. We say that is -Always Winnable (also written -AW) if
the game can be won for every initial labeling with elements of .
We prove that all acyclic digraphs are -AW for all , and we reduce the
problem of determining whether a graph is -AW to the case of strongly
connected digraphs. We then determine winnability for tournaments with a
minimum feedback arc set that arc-induces a directed path or directed star
digraph
Recommended from our members
Health Researchers' Use of Social Media: Scoping Review.
BackgroundHealth researchers are increasingly using social media in a professional capacity, and the applications of social media for health researchers are vast. However, there is currently no published evidence synthesis of the ways in which health researchers use social media professionally, and uncertainty remains as to how best to harness its potential.ObjectiveThis scoping review aimed to explore how social media is used by health researchers professionally, as reported in the literature.MethodsThe scoping review methodology guided by Arksey and O'Malley and Levac et al was used. Comprehensive searches based on the concepts of health research and social media were conducted in MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, and Web of Science databases, with no limitations applied. Articles were screened at the title and abstract level and at full text by two reviewers. One reviewer extracted data that were analyzed descriptively to map the available evidence.ResultsA total of 8359 articles were screened at the title and abstract level, of which 719 were also assessed at full text for eligibility. The 414 articles identified for inclusion were published in 278 different journals. Studies originated from 31 different countries, with the most prevalent being the United States (52.7% [218/414]). The health discipline of the first authors varied, with medicine (33.3% [138/414]) being the most common. A third of the articles covered health generally, with 61 health-specific topics. Papers used a range of social media platforms (mean 1.33 [SD 0.7]). A quarter of the articles screened reported on social media use for participant recruitment (25.1% [104/414]), followed by practical ways to use social media (15.5% [64/414]), and use of social media for content analysis research (13.3% [55/414]). Articles were categorized as celebratory (ie, opportunities for engagement, 72.2% [299/414]), contingent (ie, opportunities and possible limitations, 22.7% [94/414]) and concerned (ie, potentially harmful, 5.1% [21/414]).ConclusionsHealth researchers are increasingly publishing on their use of social media for a range of professional purposes. Although most of the sentiment around the use of social media in health research was celebratory, the uses of social media varied widely. Future research is needed to support health researchers to optimize their social media use
Search strategies for top partners in composite Higgs models
We consider how best to search for top partners in generic composite Higgs
models. We begin by classifying the possible group representations carried by
top partners in models with and without a custodial symmetry protecting the rate for
decays. We identify a number of minimal models whose top partners only have
electric charges of or and thus decay
to top or bottom quarks via a single Higgs or electroweak gauge boson. We
develop an inclusive search for these based on a top veto, which we find to be
more effective than existing searches. Less minimal models feature light states
that can be sought in final states with like-sign leptons and so we find that 2
straightforward LHC searches give a reasonable coverage of the gamut of
composite Higgs models.BG acknowledges the support of the Science and Technology Facilities Council, the In-
stitute for Particle Physics Phenomenology, and King’s College, Cambridge and thanks
R. Contino and R. Rattazzi for discussions. DS acknowledges the support of the Science
and Technology Facilities Council, as well as Emmanuel College, Cambridge, and thanks
O.Matsedonskyi for FeynRules help. TM thanks C. Lester for discussions on mass variables.This is the final version. It was first published by Springer at http://link.springer.com/article/10.1007%2FJHEP08%282014%29171
Does mass drug administration for the integrated treatment of neglected tropical diseases really work? Assessing evidence for the control of schistosomiasis and soil-transmitted helminths in Uganda
This paper was one of four papers commissioned to review the role of social sciences in NTD control by TDR, the Special Programme for Research and Training on Tropical Diseases, which is executed by WHO and co-sponsored by UNICEF, UNDP, the World Bank and WHO.This article has been made available through the Brunel Open Access Publishing Fund.Background: Less is known about mass drug administration [MDA] for neglected tropical diseases [NTDs] than is suggested by those so vigorously promoting expansion of the approach. This paper fills an important gap: it draws upon local level research to examine the roll out of treatment for two NTDs, schistosomiasis and soil-transmitted helminths, in Uganda.
Methods: Ethnographic research was undertaken over a period of four years between 2005-2009 in north-west and south-east Uganda. In addition to participant observation, survey data recording self-reported take-up of drugs for schistosomiasis, soil-transmitted helminths and, where relevant, lymphatic filariasis and onchocerciasis was collected from a random sample of at least 10% of households at study locations. Data recording the take-up of drugs in Ministry of Health registers for NTDs were analysed in the light of these ethnographic and social survey data.
Results: The comparative analysis of the take-up of drugs among adults revealed that although most long term residents have been offered treatment at least once since 2004, the actual take up of drugs for schistosomiasis and soil-transmitted helminths varies considerably from one district to another and often also within districts. The specific reasons why MDA succeeds in some locations and falters in others relates to local dynamics. Issues such as population movement across borders, changing food supply, relations between drug distributors and targeted groups, rumours and conspiracy theories about the 'real' purpose of treatment, subjective experiences of side effects from treatment, alternative understandings of affliction, responses to social control measures and historical experiences of public health control measures, can all make a huge difference. The paper highlights the need to adapt MDA to local circumstances. It also points to specific generalisable issues, notably with respect to health education, drug distribution and more effective use of existing public health legislation.
Conclusion: While it has been an achievement to have offered free drugs to so many adults, current standard practices of monitoring, evaluation and delivery of MDA for NTDs are inconsistent and inadequate. Efforts to integrate programmes have exacerbated the difficulties. Improved assessment of what is really happening on the ground will be an essential step in achieving long-term overall reduction of the NTD burden for impoverished communities.This article is available through the Brunel Open Access Publishing Fund
The application of passive sampler (DGT) technology for improved understanding of metal behaviour at a marine disposal site
Metal behaviour and availability at a contaminated dredge material disposal site within UK waters has been investigated using Diffusive Gradient in Thin films (DGT) passive sampling technology. Three stations representing contrasting history and presence of maintenance dredge disposal, including a control station outside the disposal site, have been studied and depth profiles of fluxes of different metals (Fe, Mn, Pb, Cu, Cd, Cr, Ni, Zn) to the binding gel (Chelex 100) have been derived. Higher flux rates and shallower mobilisation of metals (Mn and Fe) to the binding gel were observed at the disposal stations compared to the control station. Here we describe metal mobilization at different depths, linking the remobilization of Fe2+ and Mn2+ to the sediment (re)supply of other heavy metals of interest with a focus on Cd, Ni and Pb and as they are on the Water Framework Directive (WFD) list of priority substances and OSPAR list of priority pollutants. Results showed that Cd, Pb and Ni exhibited signs of resupply at the sediment-water interface (SWI). There was a potential increased mobilisation and source to the water column of Pb and Ni at the disposal site stations, but there was no Cd source, despite higher total loadings. This information has the potential to improve our current understanding of metal cycles at disposal sites. This work can be used as an indication of likely metal bioavailability and also assist in determining whether the sites act as sources or sinks of heavy metals. This information could assist disposal site monitoring and dredge material licensing
Inelastic neutron scattering studies of methyl chloride synthesis over alumina
Not only is alumina the most widely used catalyst support material in the world, it is also an important catalyst in its own right. One major chemical process that uses alumina in this respect is the industrial production of methyl chloride. This is a large scale process (650 000 metric tons in 2010 in the United States), and a key feedstock in the production of silicones that are widely used as household sealants. In this Account, we show how, in partnership with conventional spectroscopic and reaction testing methods, inelastic neutron scattering (INS) spectroscopy can provide additional insight into the active sites present on the catalyst, as well as the intermediates present on the catalyst surface.<p></p>
INS spectroscopy is a form of vibrational spectroscopy, where the spectral features are dominated by modes involving hydrogen. Because of this, most materials including alumina are largely transparent to neutrons. Advantageously, in this technique, the entire “mid-infrared”, 0–4000 cm<sup>–1</sup>, range is accessible; there is no cut-off at 1400 cm<sup>–1</sup> as in infrared spectroscopy. It is also straightforward to distinguish fundamental modes from overtones and combinations. <p></p>
A key parameter in the catalyst’s activity is the surface acidity. In infrared spectroscopy of adsorbed pyridine, the shifts in the ring stretching modes are dependent on the strength of the acid site. However, there is a very limited spectral range available. We discuss how we can observe the low energy ring deformation modes of adsorbed pyridine by INS spectroscopy. These modes can undergo shifts that are as large as those seen with infrared inspectroscopy, potentially enabling finer discrimination between acid sites. <p></p>
Surface hydroxyls play a key role in alumina catalysis, but in infrared spectroscopy, the presence of electrical anharmonicity complicates the interpretation of the O–H stretch region. In addition, the deformations lie below the infrared cut-off. Both of these limitations are irrelevant to INS spectroscopy, and all the modes are readily observable. When we add HCl to the catalyst surface, the acid causes changes in the spectra. We can then deduce both that the surface chlorination leads to enhanced Lewis acidity and that the hydroxyl group must be threefold coordinated. <p></p>
When we react η-alumina with methanol, the catalyst forms a chemisorbed methoxy species. Infrared spectroscopy clearly shows its presence but also indicates the possible coexistence of a second species. Because of INS spectroscopy’s ability to discriminate between fundamental modes and combinations, we were able to unambiguously show that there is a single intermediate present on the surface of the active catalyst. This work represents a clear example where an understanding of the chemistry at the molecular level can help rationalize improvements in a large scale industrial process with both financial and environmental benefits. <p></p>
- …