32,355 research outputs found

    Sine-Gordon Soliton on a Cnoidal Wave Background

    Full text link
    The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change

    Anomalous Height Fluctuation Width in Crossover from Random to Coherent Surface Growths

    Full text link
    We study an anomalous behavior of the height fluctuation width in the crossover from random to coherent growths of surface for a stochastic model. In the model, random numbers are assigned on perimeter sites of surface, representing pinning strengths of disordered media. At each time, surface is advanced at the site having minimum pinning strength in a random subset of system rather than having global minimum. The subset is composed of a randomly selected site and its (1)(\ell-1) neighbors. The height fluctuation width W2(L;)W^2(L;\ell) exhibits the non-monotonic behavior with \ell and it has a minimum at \ell^*. It is found numerically that \ell^* scales as L0.59\ell^*\sim L^{0.59}, and the height fluctuation width at that minimum, W2(L;)W^2(L;\ell^*), scales as L0.85\sim L^{0.85} in 1+1 dimensions. It is found that the subset-size (L)\ell^*(L) is the characteristic size of the crossover from the random surface growth in the KPZ universality, to the coherent surface growth in the directed percolation universality.Comment: 13 postscript file

    Superconformal field theories from IIB spectroscopy on AdS5×T11AdS_5\times T^{11}

    Full text link
    We report on tests of the AdS/CFT correspondence that are made possible by complete knowledge of the Kaluza-Klein mass spectrum of type IIB supergravity on AdS5×T11AdS_5 \times T^{11} with T^{11}=SU(2)^2/U(1). After briefly discussing general multiplet shortening conditions in SU(2,2|1) and PSU(2,2|4), we compare various types of short SU(2,2|1) supermultiplets on AdS_5 and different families of boundary operators with protected dimensions. The supergravity analysis predicts the occurrence in the SCFT at leading order in N and g_s N, of extra towers of long multiplets whose dimensions are rational but not protected by supersymmetry.Comment: 11 pages, To appear in the proceedings of the STRINGS '99 conference, Potsdam (Germany), 19-25 July 199

    Total energy differences between SiC polytypes revisited

    Full text link
    The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlation functional in the density functional method. Numerical convergence versus k-point sampling and basis set completeness are demonstrated to be better than 1 meV/atom. The parameters of several generalized anisotropic next-nearest-neighbor Ising models are extracted and their significance and consequences for epitaxial growth are discussed.Comment: 8 pages, 3 figures, Latex, uses epsfig and revte

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    A Novel Dielectric Anomaly in Cuprates and Nickelates: Signature of an Electronic Glassy State

    Full text link
    The low-frequency dielectric response of hole-doped insulators La_{2}Cu_{1-x}Li_{x}O_{4} and La_{2-x}Sr_{x}NiO_{4} shows a large dielectric constant \epsilon ^{'} at high temperature and a step-like drop by a factor of 100 at a material-dependent low temperature T_{f}. T_{f} increases with frequency and the dielectric response shows universal scaling in a Cole-Cole plot, suggesting that a charge glass state is realized both in the cuprates and in the nickelates.Comment: 5 pages, 4 figure

    Localization and Capacitance Fluctuations in Disordered Au Nano-junctions

    Full text link
    Nano-junctions, containing atomic-scale gold contacts between strongly disordered leads, exhibit different transport properties at room temperature and at low temperature. At room temperature, the nano-junctions exhibit conductance quantization effects. At low temperatures, the contacts exhibit Coulomb-Blockade. We show that the differences between the room-temperature and low temperature properties arise from the localization of electronic states in the leads. The charging energy and capacitance of the nano-junctions exhibit strong fluctuations with applied magnetic field at low temperature, as predicted theoretically.Comment: 20 pages 8 figure

    On higher dimensional Einstein spacetimes with a warped extra dimension

    Full text link
    We study a class of higher dimensional warped Einstein spacetimes with one extra dimension. These were originally identified by Brinkmann as those Einstein spacetimes that can be mapped conformally on other Einstein spacetimes, and have subsequently appeared in various contexts to describe, e.g., different braneworld models or warped black strings. After clarifying the relation between the general Brinkmann metric and other more specific coordinate systems, we analyze the algebraic type of the Weyl tensor of the solutions. In particular, we describe the relation between Weyl aligned null directions (WANDs) of the lower dimensional Einstein slices and of the full spacetime, which in some cases can be algebraically more special. Possible spacetime singularities introduced by the warp factor are determined via a study of scalar curvature invariants and of Weyl components measured by geodetic observers. Finally, we illustrate how Brinkmann's metric can be employed to generate new solutions by presenting the metric of spinning and accelerating black strings in five dimensional anti-de Sitter space.Comment: 14 pages, minor changes in the text, mainly in Section 2.

    Learning 3D Human Pose from Structure and Motion

    Full text link
    3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with a weakly-supervised learning framework to jointly learn from large-scale in-the-wild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.Comment: ECCV 2018. Project page: https://www.cse.iitb.ac.in/~rdabral/3DPose
    corecore