17,284 research outputs found
Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors
We report on fabrication and electrical characteristics of high-mobility field-effect transistors (FETs) using ZnO nanorods. For FET fabrications, single-crystal ZnO nanorods were prepared using catalyst-free metalorganic vapor phase epitaxy. Although typical ZnO nanorod FETs exhibited good electrical characteristics, with a transconductance of similar to140 nS and a mobility of 75 cm(2)/V s, the device characteristics were significantly improved by coating a polyimide thin layer on the nanorod surface, exhibiting a large turn-ON/OFF ratio of 10(4)-10(5), a high transconductance of 1.9 muS, and high electron mobility above 1000 cm(2)/V s. The role of the polymer coating in the enhancement of the devices is also discussed. (C) 2004 American Institute of Physics.X11333sciescopu
Magnetic Properties of Dilute Alloys: Equations for Magnetization and its Structural Fluctuations
The dilute Heisenberg ferromagnet is studied taking into account fluctuations
of magnetization caused by disorder. A self-consistent system of equations for
magnetization and its mean quadratic fluctuations is derived within the
configurationally averaged two-time temperature Green's function method. This
system of equations is analised at low concentration of non-magnetic
impurities. Mean relative quadratic fluctuations of magnetization are revealed
to be proportional to the square of concentration of impurities.Comment: 16 pages, LaTe
Possible flat band bending of the Bi1.5Sb0.5Te1.7Se1.3 crystal cleaved in an ambient air probed by terahertz emission spectroscopy
We investigate an evolution of the surface electronic state of the Bi1.5Sb0.5Te1.7Se1.3 single crystal, which is one of the most bulk insulating topological insulators, by examining terahertz light emitted from the sample surface upon the illumination of the near-infrared femtosecond laser pulses. We find that the surface state with a flat band bending can appear in the course of the natural maturation process of the surface state in an ambient air. Furthermore, we demonstrate that the evolution of the surface electronic state can be accelerated, decelerated, or even stopped by controlling environmental conditions to contain different amount of H2O, in particular.1121Ysciescopu
Preliminary Studies about Synthesis and Electrical Properties of Ruthenium Doped Lanthanum Strontium Titanate as a Potential Anode of Solid Oxide Fuel Cells
The lanthanum strontium titanate (LST) is one of the most representative alternative anode materials. Although it shows low catalytic properties, the disadvantage could be improved by doping of ruthenium which is widely used as catalyst under steam reforming reaction or oxidation reaction. The ruthenium doped lanthanum strontium titanates (LSTRs) powders were synthesized by complex EDTA-citrate method showing well crystallinity. Additionally, the prepared samples were evaluated through various experimental tests. For example, the stability in the reducing atmosphere and chemical compatibility with YSZ electrolyte such as reactivity test in high temperature were confirmed by XRD (X-ray diffraction). And electrical conductivity in wet H-2 atmosphere at 900 degrees C is about 350.6 S/cm, 342.4 S/cm and 179.1 S/cm with sintered bar of LST, LSTR0.02 and LSTR0.05, respectively.open1111Nsciescopu
Performance of an Anode Supported Solid Oxide Fuel Cell with Indirect Internal Reforming
The conversion of fuel into hydrogen-rich gas is necessary for fuel cells. This can be achieved either indirectly in fuel processing systems, in which the hydrocarbon feed is converted in an external catalytic steam reformer, or directly in the fuel cell. In this paper, the unit module of solid oxide fuel cell was assembled by one reformer and four cells. The reformer was fabricated by extruded dummy cell and combined with two cells on each side respectively. The reforming catalyst was coated on internal channel of the dummy cell. The unit module has successfully tested with wet CH4 as fuel and air as oxidant and its maximum power density exceeded 150mW/cm(2) at 750 degrees C.open110Nsciescopu
Design and Fabrication of Electrolyte-Supported Tubular SOFC Combined with Supercritical Water Oxidation on Biomass Gas
Solid oxide fuel cells (SOFCs) are relatively simple and environmental friendly devices for the production of electricity from hydrocarbons. The use of a high pressure supercritical water (SCW) reactor containing a SOFC has the potential for using a multitude of logistical liquid fuels that would otherwise not be possible in a regular SOFC system. A SOFC-SCW system was designed to allow the anode to be exposed to the pressure and chemical milieu of the supercritical water oxidation reactor. The effects of the amount of water/fuel and oxygen fed into the reactor under SCW conditions at 400 degrees C were studied. The effects on electrochemical performance as well as preliminary results on a number of feed stocks, for example pectin, are also described.open1111Nsciescopu
An Analysis of Solution Point Coordinates for Flux Reconstruction Schemes on Tetrahedral Elements
The flux reconstruction (FR) approach offers an efficient route to high-order accuracy on unstructured grids. In this work we study the effect of solution point placement on the stability and accuracy of FR schemes on tetrahedral grids. To accomplish this we generate a large number of solution point candidates that satisfy various criteria at polynomial orders ℘=3,4,5℘=3,4,5 . We then proceed to assess their properties by using them to solve the non-linear Euler equations on both structured and unstructured meshes. The results demonstrate that the location of the solution points is important in terms of both the stability and accuracy. Across a range of cases it is possible to outperform the solution points of Shunn and Ham for specific problems. However, there appears to be a degree of problem-dependence with regards to the optimal point set, and hence overall it is concluded that the Shunn and Ham points offer a good compromise in terms of practical utility
Structural change in polar nanoregion in alkali niobate added Pb(Zn <inf>1/3</inf>Nb <inf>2/3</inf>) <inf>0.95</inf>Ti <inf>0.05</inf>O <inf>3</inf> single crystal and its effect on ferroelectric properties
Pb(Zn 1/3Nb 2/3) 0.95Ti 0.05O 3 (PZNT) single crystals with 5 mol.% alkali niobate such as LiNbO 3 (LN), NaNbO 3 (NN), and KNbO 3 (KN) were fabricated by using a flux method to investigate the effect of A-site cation radius on the structure and ferroelectric properties of PZNT under electric field (E-field). Their structure and properties showed different electric field dependence. Polarization versus electric field and strain versus electric field curves of PZNT-0.05LN showed E-field induced phase transition from a relaxor state to a normal ferroelectric state. However, only relaxor behavior was observed in PZNT-0.05NN and PZNT-0.05KN. The effect of A-site ion doping is attributed to the change in local lattice distortion and polar nano-region. When smaller cation such as Li ion substitutes Pb ion, the off-center displacement of Nb ion stabilizes rhombohedral lattice distortion. They, in turn, facilitate the development of macro-domains under electric field (E-field) in PZNT-0.05LN. In contrast, the substitution of Pb with larger cations such as Ni and K decreases the rhombohedral distortion of PZNT, which leads to the disappearance of unique E-field induced phase transition from rhombohedral to tetragonal phase in PZNT. Therefore, non-linear electrostrictive behavior of relaxor ferroelectrics is found in PZNT-0.05NN and PZNT-0.05KN. © 2012 American Institute of Physics
The effect of alkali niobate addition on the phase stability and dielectric properties of Pb (Zn13 Nb23) O3 based ceramic
While Pb (Zn13 Nb23) O3 -PbTi O3 (PZN-PT) single crystals have shown superior ferroelectric properties, less scientific and technical interests have been placed on PZN-PT polycrystalline ceramics due to their poor thermodynamic stability and the difficult processing conditions. Here, we stabilized the PZN-PT based ceramics by adding alkali niobates such as NaNb O3 (NN) and KNb O3 (KN) and investigated their structure and dielectric properties. Two stabilization mechanisms are suggested in alkali niobate added PZN-PT ceramics, increased tolerance factor and enhanced electronegativity difference. KN stabilized the perovskite structure of PZN-PT based ceramics more effectively than NN. Both PZN-PT-KN and PZN-PT-NN ceramics showed the typical behavior of relaxor ferroelectrics. The temperature of maximum dielectric constant of PZN-PT-NN was slightly higher than that of the PZN-PT-KN, which was explained by the difference in ionic size and B -site ordering. © 2007 American Institute of Physics
Dry etching of ZnO films and plasma-induced damage to optical properties
To study the effects of plasma chemistries on etch characteristics. and plasma-induced damage to the optical properties, dry etching of ZnO films has been carried out using inductively coupled plasmas of Cl-2 /Ar, Cl-2 /H-2 /Ar, and CH4 /H-2 /Ar. The CH4 /H-2 /Ar chemistry showed a faster etch rate and a better surface morphology than the Cl-2-based chemistries. Etched samples in all chemistries showed a substantial decrease in the PL intensity of band-edge luminescence mainly due to the plasma-induced damage. The CH4 /H-2 /Ar chemistry showed the least degradation of the optical properties. (C) 2003 American Vacuum Society. [DOI: 10.1116/1.1563252].open1139sciescopu
- …