94,386 research outputs found

    The strongest experimental constraints on SU(5)xU(1) supergravity models

    Full text link
    We consider a class of well motivated string-inspired flipped SU(5)SU(5) supergravity models which include four supersymmetry breaking scenarios: no-scale, strict no-scale, dilaton, and special dilaton, such that only three parameters are needed to describe all new phenomena (mt,tanβ,mg~)(m_t,\tan\beta,m_{\tilde g}). We show that the LEP precise measurements of the electroweak parameters in the form of the ϵ1\epsilon_1 variable, and the CLEOII allowed range for \bsg are at present the most important experimental constraints on this class of models. For m_t\gsim155\,(165)\GeV, the ϵ1\epsilon_1 constraint (at 90(95)\%CL) requires the presence of light charginos (m_{\chi^\pm_1}\lsim50-100\GeV depending on mtm_t). Since all sparticle masses are proportional to mg~m_{\tilde g}, m_{\chi^\pm_1}\lsim100\GeV implies: m_{\chi^0_1}\lsim55\GeV, m_{\chi^0_2}\lsim100\GeV, m_{\tilde g}\lsim360\GeV, m_{\tilde q}\lsim350\,(365)\GeV, m_{\tilde e_R}\lsim80\,(125)\GeV, m_{\tilde e_L}\lsim120\,(155)\GeV, and m_{\tilde\nu}\lsim100\,(140)\GeV in the no-scale (dilaton) flipped SU(5)SU(5) supergravity model. The \bsg constraint excludes a significant fraction of the otherwise allowed region in the (mχ1±,tanβ)(m_{\chi^\pm_1},\tan\beta) plane (irrespective of the magnitude of the chargino mass), while future experimental improvements will result in decisive tests of these models. In light of the ϵ1\epsilon_1 constraint, we conclude that the outlook for chargino and selectron detection at LEPII and at HERA is quite favorable in this class of models.Comment: CTP-TAMU-40/93, Latex, 13 pages, 10 figures (available as uuencoded 0.963MB file from [email protected]

    Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data

    Full text link
    We have independently measured the genus topology of the temperature fluctuations in the cosmic microwave background seen in the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data indicates consistency with Gaussian random-phase initial conditions, as predicted by standard inflation. We set 95% confidence limits on non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l <= 8) modes show a slight anti-correlation with the Galactic foreground, but not exceeding 95% confidence, and that the topology defined by these modes is consistent with that of a Gaussian random-phase distribution (within 95% confidence).Comment: MNRAS LaTeX style (mn2e.cls), EPS and JPEG figure

    First principles investigation of transition-metal doped group-IV semiconductors: Rx{_x}Y1x_{1-x} (R=Cr, Mn, Fe; Y=Si, Ge)

    Full text link
    A number of transition-metal (TM) doped group-IV semiconductors, Rx_{x}Y1x_{1-x} (R=Cr, Mn and Fe; Y=Si, Ge), have been studied by the first principles calculations. The obtained results show that antiferromagnetic (AFM) order is energetically more favored than ferromagnetic (FM) order in Cr-doped Ge and Si with xx=0.03125 and 0.0625. In 6.25% Fe-doped Ge, FM interaction dominates in all range of the R-R distances while for Fe-doped Ge at 3.125% and Fe-doped Si at both concentrations of 3.125% and 6.25%, only in a short R-R range can the FM states exist. In the Mn-doped case, the RKKY-like mechanism seems to be suitable for the Ge host matrix, while for the Mn-doped Si, the short-range AFM interaction competes with the long-range FM interaction. The different origin of the magnetic orders in these diluted magnetic semiconductors (DMSs) makes the microscopic mechanism of the ferromagnetism in the DMSs more complex and attractive.Comment: 14 pages, 2 figures, 6 table

    Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique

    Full text link
    Robust design has been widely recognized as a leading method in reducing variability and improving quality. Most of the engineering statistics literature mainly focuses on finding "point estimates" of the optimum operating conditions for robust design. Various procedures for calculating point estimates of the optimum operating conditions are considered. Although this point estimation procedure is important for continuous quality improvement, the immediate question is "how accurate are these optimum operating conditions?" The answer for this is to consider interval estimation for a single variable or joint confidence regions for multiple variables. In this paper, with the help of the bootstrap technique, we develop procedures for obtaining joint "confidence regions" for the optimum operating conditions. Two different procedures using Bonferroni and multivariate normal approximation are introduced. The proposed methods are illustrated and substantiated using a numerical example.Comment: Two tables, Three figure

    Log canonical thresholds of Del Pezzo Surfaces in characteristic p

    Get PDF
    The global log canonical threshold of each non-singular complex del Pezzo surface was computed by Cheltsov. The proof used Koll\'ar-Shokurov's connectedness principle and other results relying on vanishing theorems of Kodaira type, not known to be true in finite characteristic. We compute the global log canonical threshold of non-singular del Pezzo surfaces over an algebraically closed field. We give algebraic proofs of results previously known only in characteristic 00. Instead of using of the connectedness principle we introduce a new technique based on a classification of curves of low degree. As an application we conclude that non-singular del Pezzo surfaces in finite characteristic of degree lower or equal than 44 are K-semistable.Comment: 21 pages. Thorough rewrite following referee's suggestions. To be published in Manuscripta Mathematic
    corecore