16,225 research outputs found
A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications
A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (similar to 300 mu m thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.open1112Ysciescopu
A New Methodology for Generalizing Unweighted Network Measures
Several important complex network measures that helped discovering common
patterns across real-world networks ignore edge weights, an important
information in real-world networks. We propose a new methodology for
generalizing measures of unweighted networks through a generalization of the
cardinality concept of a set of weights. The key observation here is that many
measures of unweighted networks use the cardinality (the size) of some subset
of edges in their computation. For example, the node degree is the number of
edges incident to a node. We define the effective cardinality, a new metric
that quantifies how many edges are effectively being used, assuming that an
edge's weight reflects the amount of interaction across that edge. We prove
that a generalized measure, using our method, reduces to the original
unweighted measure if there is no disparity between weights, which ensures that
the laws that govern the original unweighted measure will also govern the
generalized measure when the weights are equal. We also prove that our
generalization ensures a partial ordering (among sets of weighted edges) that
is consistent with the original unweighted measure, unlike previously developed
generalizations. We illustrate the applicability of our method by generalizing
four unweighted network measures. As a case study, we analyze four real-world
weighted networks using our generalized degree and clustering coefficient. The
analysis shows that the generalized degree distribution is consistent with the
power-law hypothesis but with steeper decline and that there is a common
pattern governing the ratio between the generalized degree and the traditional
degree. The analysis also shows that nodes with more uniform weights tend to
cluster with nodes that also have more uniform weights among themselves.Comment: 23 pages, 10 figure
A large-aperture strip-grid beam splitter for partially combined two millimeter-wave diagnostics on Korea Superconducting Tokamak Advanced Research
A large-aperture beam splitter has been developed for simultaneous operation of two millimeter-wave diagnostics employing different probe beams in the frequency and polarization, microwave imaging reflectometer (???85 GHz X-mode), and collective scattering system (300 GHz O-mode), on the Korea Superconducting Tokamak Advanced Research device. The beam splitter was designed based on a polarizer concept (i.e., grid of metal strips on a thin dielectric sheet), and this can be an optimal solution for these two diagnostics. Fabrication of the strips with uniform sub-millimeter width and spacing on a large dielectric sheet was achieved with an etching technique, and the laboratory test results on the reflection and transmission ratio are in good agreement with design values
Recommended from our members
Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity.
Developmental enhancers integrate graded concentrations of transcription factors (TFs) to create sharp gene expression boundaries. Here we examine the hunchback P2 (HbP2) enhancer which drives a sharp expression pattern in the Drosophila blastoderm embryo in response to the transcriptional activator Bicoid (Bcd). We systematically interrogate cis and trans factors that influence the shape and position of expression driven by HbP2, and find that the prevailing model, based on pairwise cooperative binding of Bcd to HbP2 is not adequate. We demonstrate that other proteins, such as pioneer factors, Mediator and histone modifiers influence the shape and position of the HbP2 expression pattern. Comparing our results to theory reveals how higher-order cooperativity and energy expenditure impact boundary location and sharpness. Our results emphasize that the bacterial view of transcription regulation, where pairwise interactions between regulatory proteins dominate, must be reexamined in animals, where multiple molecular mechanisms collaborate to shape the gene regulatory function
Recommended from our members
Finite element analysis for normal pressure hydrocephalus: The effects of the integration of sulci.
Finite element analysis (FEA) is increasingly used to investigate the brain under various pathological changes. Although FEA has been used to study hydrocephalus for decades, previous studies have primarily focused on ventriculomegaly. The present study aimed to investigate the pathologic changes regarding sulcal deformation in normal pressure hydrocephalus (NPH). Two finite element (FE) models-an anatomical brain geometric (ABG) model and the conventional simplified brain geometric (SBG) model-of NPH were constructed. The models were constructed with identical boundary conditions but with different geometries. The ABG model contained details of the sulci geometry, whereas these details were omitted from the SBG model. The resulting pathologic changes were assessed via four biomechanical parameters: pore pressure, von Mises stress, pressure, and void ratio. NPH was induced by increasing the transmantle pressure gradient (TPG) from 0 to a maximum of 2.0 mmHg. Both models successfully simulated the major features of NPH (i.e., ventriculomegaly and periventricular lucency). The changes in the biomechanical parameters with increasing TPG were similar between the models. However, the SBG model underestimated the degree of stress across the cerebral mantle by 150% compared with the ABG model. The SBG model also overestimates the degree of ventriculomegaly (increases of 194.5% and 154.1% at TPG = 2.0 mmHg for the SBG and ABG models, respectively). Including the sulci geometry in a FEA for NPH clearly affects the overall results. The conventional SBG model is inferior to the ABG model, which accurately simulated sulcal deformation and the consequent effects on cortical or subcortical structures. The inclusion of sulci in future FEA for the brain is strongly advised, especially for models used to investigate space-occupying lesions.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1004827).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.media.2015.05.00
Iron content in forage sorghum (Sorghum bicolor (L.) Moench) measured on different slit widths with atomic absorption spectrometry
Our objective was to know the right slit width for iron (Fe) concentration of forage sorghum, sorghum hybrid (Sorghum bicolor (L.) Moench), and also to discern which water treatment sludge (WTS) were good for ruminant's health with the feeding sorghum on the present study. The present experiment was carried out on a randomized block design with four treatments; Control, alum sludge compost, alum sludge + NPK (nitrogen, phosphorus, potassium fertilizers), alum sludge compost + NPK (nitrogen, phosphorus, potassium fertilizers). Sorghum hybrid was harvested, and iron content of it was analyzed with an atomic absorption spectrophotometer on background correction (BGC) mode. In order to analyze the iron (Fe) content of the sorghum with the spectrophotometer, three different slit widths conditions were used; 0.15, 0.20 and 0.25 nm. Absorbance and background values were obtained during the Fe analyses with the apparatus. When the background value is small, it is preferred for some trace metals’ analyses. Both (AM/BS) ratio (mean of the absorbance values<AM> to the standard deviation of back ground values<BS>) and (AS<standard deviation of the absorbance values>/BS) ratio, were larger on 0.25 nm slit than those on 0.15 and 0.20 nm slit, and, from our experiment, the condition seemed better on the 0.25 nm slit for the iron analysis with the spectrophotometer. Therefore, the sorghum hybrid grown on (Alum+NPK) and on (Compost only) might be dangerous for ruminants because of their higher values than 200 mg Fe/kg DM (dry matter).Key words: Absorbance, alum sludge, atomic absorption spectrophotometer, background, forage sorghum hybrid, iron, slit
Liposome-based drug delivery in breast cancer treatment
Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies
Clustering and the hyperbolic geometry of complex networks
Clustering is a fundamental property of complex networks and it is the
mathematical expression of a ubiquitous phenomenon that arises in various types
of self-organized networks such as biological networks, computer networks or
social networks. In this paper, we consider what is called the global
clustering coefficient of random graphs on the hyperbolic plane. This model of
random graphs was proposed recently by Krioukov et al. as a mathematical model
of complex networks, under the fundamental assumption that hyperbolic geometry
underlies the structure of these networks. We give a rigorous analysis of
clustering and characterize the global clustering coefficient in terms of the
parameters of the model. We show how the global clustering coefficient can be
tuned by these parameters and we give an explicit formula for this function.Comment: 51 pages, 1 figur
Impact of socioeconomic deprivation on rate and cause of death in severe mental illness
Background:
Socioeconomic status has important associations with disease-specific mortality in the general population. Although individuals with Severe Mental Illnesses (SMI) experience significant premature mortality, the relationship between socioeconomic status and mortality in this group remains under investigated.<p></p>
Aims:
To assess the impact of socioeconomic status on rate and cause of death in individuals with SMI (schizophrenia and bipolar disorder) relative to the local (Glasgow) and wider (Scottish) populations.<p></p>
Methods:
Cause and age of death during 2006-2010 inclusive for individuals with schizophrenia or bipolar disorder registered on the Glasgow Psychosis Clinical Information System (PsyCIS) were obtained by linkage to the Scottish General Register Office (GRO). Rate and cause of death by socioeconomic status, measured by Scottish Index of Multiple Deprivation (SIMD), were compared to the Glasgow and Scottish populations.<p></p>
Results:
Death rates were higher in people with SMI across all socioeconomic quintiles compared to the Glasgow and Scottish populations, and persisted when suicide was excluded. Differences were largest in the most deprived quintile (794.6 per 10,000 population vs. 274.7 and 252.4 for Glasgow and Scotland respectively). Cause of death varied by socioeconomic status. For those living in the most deprived quintile, higher drug-related deaths occurred in those with SMI compared to local Glasgow and wider Scottish population rates (12.3% vs. 5.9%, p = <0.001 and 5.1% p = 0.002 respectively). A lower proportion of deaths due to cancer in those with SMI living in the most deprived quintile were also observed, relative to the local Glasgow and wider Scottish populations (12.3% vs. 25.1% p = 0.013 and 26.3% p = <0.001). The proportion of suicides was significantly higher in those with SMI living in the more affluent quintiles relative to Glasgow and Scotland (54.6% vs. 5.8%, p = <0.001 and 5.5%, p = <0.001).
Discussion and conclusions:
Excess mortality in those with SMI occurred across all socioeconomic quintiles compared to the Glasgow and Scottish populations but was most marked in the most deprived quintiles when suicide was excluded as a cause of death. Further work assessing the impact of socioeconomic status on specific causes of premature mortality in SMI is needed
Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.1142Ysciescopu
- …