21 research outputs found

    The Effect of Angiotensin II on Hypoxic Pulmonary Vasoconstriction in Isolated Rabbit Lung

    No full text

    Total Intravenous Anesthesia with Sufentanil and Midazolam for Open Heart Surgery

    No full text

    Tertiary hierarchically structured TiO(2) for CdS quantum-dot-sensitized solar cells

    No full text
    A tertiary hierarchically structured mesoporous spherical TiO2 (with a diameter of 1190 +/- 60 nm) was synthesized by combining the sol-gel and the subsequent solvothermal treatment, and applied to CdS quantum-dot-sensitized solar cells (QDSSCs). This mesoporous spherical (MS) TiO2 offers a high surface area (76.02 m(2) g(-1)), a high internal reflectance in the visible region and a pore accessibility. A conversion efficiency of 1.9% was achieved by CdS QDSSCs composed of the MS TiO2 photoanode, which corresponds to similar to 58% improvement as compared with the values obtained from the conventional devices made with 20-nm-sized nanocrystalline TiO2 under AM 1.5 illumination of 100 mW cm(-2). Thus. the MS TiO2 can be a promising candidate for the photoanode material of QDSSCs. (C) 2011 Elsevier Ltd. All rights reserved.X111515sciescopu

    Size-tunable mesoporous spherical TiO(2) as a scattering overlayer in high-performance dye-sensitized solar cells

    No full text
    Size-tunable mesoporous spherical TiO2 (MS TiO2) with a surface area of similar to 110 m(2) g(-1) have been prepared through combination of "dilute mixing"-driven hydrolysis of titanium(iv) tetraethoxide and solvothermal treatment. The hierarchically structured MS TiO2 are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen sorption analysis. Using three different MS TiO2 (587, 757, and 1554 nm in diameter) as a scattering overlayer on a transparent nanocrystalline TiO2 film, bi-layered dye-sensitized solar cells (DSCs) have been fabricated. Since the MS TiO2 particles are comprised of similar to 10 nm nanocrystallites that cluster together to form large secondary spheres, they can function as light scatterers without sacrificing the surface area for dye-uptake. As a result, the present MS TiO2-based cells perform a noticeable improvement in the overall efficiency: maximum 9.37% versus 6.80% for the reference cell made of a TiO2 nanocrystalline film. This extraordinary result is attributed to the dual effects of enhanced dye loading and light scattering.X1110599sciescopu

    STAT3 Inhibitor ODZ10117 Suppresses Glioblastoma Malignancy and Prolongs Survival in a Glioblastoma Xenograft Model

    No full text
    Constitutively activated STAT3 plays an essential role in the initiation, progression, maintenance, malignancy, and drug resistance of cancer, including glioblastoma, suggesting that STAT3 is a potential therapeutic target for cancer therapy. We recently identified ODZ10117 as a small molecule inhibitor of STAT3 and suggested that it may have an effective therapeutic utility for the STAT3-targeted cancer therapy. Here, we demonstrated the therapeutic efficacy of ODZ10117 in glioblastoma by targeting STAT3. ODZ10117 inhibited migration and invasion and induced apoptotic cell death by targeting STAT3 in glioblastoma cells and patient-derived primary glioblastoma cells. In addition, ODZ10117 suppressed stem cell properties in glioma stem cells (GSCs). Finally, the administration of ODZ10117 showed significant therapeutic efficacy in mouse xenograft models of GSCs and glioblastoma cells. Collectively, ODZ10117 is a promising therapeutic candidate for glioblastoma by targeting STAT3

    Preparation and synthesis of carbon nanomaterials from 1-hexanol by solution plasma process with Ar/O2 gas bubbles

    No full text
    This study presents the simple and catalyst-free methods for synthesizing carbon nanomaterials from 1-hexanol alcohol by using stable solution plasma process by varying the argon (Ar), oxygen (O2), and Ar and O2 mixtures plasma working gas bubble. The structural characteristics of carbon nanomaterials are measured by transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The discharge characteristics are examined based on the discharge voltage, current, and optical emission spectrometer (OES) techniques. By using the external Ar gas bubble discharge during solution plasma process, the size of carbon nanoparticle and discharge voltage are decreased compared to the no gas case and the discharge current is increased, which would be due to the increase of plasma energy and enhancement of the square of plasma-liquid contact to plasma volume. By using the external O2 gas bubble discharge during solution plasma process, whereas, the size of carbon nanoparticle is increased compared to the no gas case and the discharge voltage and current are decreased, which would be due to the production of relatively high amounts of oxygen radicals, resulting in the flame synthesis. Raman spectra results show that the degree of graphitization of the carbon nanomaterials synthesized with external Ar 150 and O2 50 standard cubic centimeter per minutes (sccm) mixtures gas bubble during solution plasma process is observed to be greater than that of the carbon nanomaterials synthesized with the only Ar or O2 gas bubble. This solution plasma process by varying the plasma working gas mixtures can potentially be used for the precise nanomaterial synthesis. © 2019 Taylor & Francis Group, LLC.1

    Experimental study on atmospheric pressure plasma polymerized conducting polymer under coupling and remote conditions

    No full text
    This article has analyzed conducting polymer from the viewpoint of material properties, which is polymerized under atmospheric pressure condition for coupling and remote conditions, respectively. The experimental results show that the atmospheric pressure plasma polymerized pyrrole (pPPy) exhibits similar characteristics from the viewpoint of crystallinity, but the shapes and roughness of the particles are significantly distinguished. In the case of coupling condition, a uniform and flat layer like a thin film was obtained. However, in the case of remote condition, the deposited layer had more rough nanoparticles compared to that of coupling condition. The pPPy surface characteristic and morphology changes are discussed by using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) results. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis are used to determine the chemical changes introduced by the atmospheric pressure plasma for coupling and remote conditions. The both pPPy materials, which were obtained by coupling and remote conditions, are expected to be applied to various fields, especially for designing the thin conducting electrode layer of polymer light emitting diode (P-LED) or for improving the efficiency by inserting conducting polymer powder on hole injection layer. © 2018 Taylor & Francis Group, LLC.1
    corecore