4,134 research outputs found

    A theoretical review and new directions for designing hybrid learning spaces with web2.0 technologies

    Get PDF
    2011Learning spaces can have a significant impact on learning. The emergence of virtual space with information technology has transformed the spatial design and organization of the learning spaces. Embodied web2.0 technologies, which empower learners and allow learners collaboration, sharing, and participation between asynchronous and synchronous, have been increasingly changing the way of learning and extending the learning spaces. In spite, an important piece of restructuring learning spaces with web2.0 is not concerned. The purpose of this study is to conceptualize comprehensive constructs for understanding the learning spaces and explore the learning technologist's roles for designing learning spaces with web2.0 technologies through a hybrid approach. Some suggestions for the learning technologists when they design for hybrid learning spaces with web2.0 are as follows: Utilization of affordance-based design through a hybrid approach; Application of self-directed learning strategies in hybrid learning spaces; Integration of Net gen-based design with content strategies; Focusing of designing space for learning itsel

    Improvement of retinoids production in recombinant E. coli using glyoxylic acid

    Get PDF
    Isoprenoids are the most chemically diverse compounds found in nature. They are present in all organisms and have essential roles in membrane structure, redox chemistry, reproductive cycles, growth regulation, signal transduction and defense mechanisms. In spite of their diversity of functions and structures, all isoprenoids are derived from the common building blocks of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Optimization of IPP synthesis pathway is of benefit to mass production of various isoprenoids. There are two pathways of 2-C-Methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) for IPP synthesis. Prokaryotes including E. coli generally use MEP pathway whereas MVA pathway is used in eukaryotes. To improve isoprenoid production, it was performed the deletion of genes in E. coli, which are involved in both formation of fermentation by-products such as organic acids and alcohols, and consumption of precursors of MEP and MVA pathways, pyruvate and acetyl-CoA. As a result, we were able to develop a strain with improved fermentation productivity and carbon source utilization efficiency, the mutant strain was called AceCo. Higher lycopene production was achieved in the AceCo strain compared to the wild type MG1655 strain due to no formation of the inhibitory by-products. However, retinoids production of AceCo strain decreased to a half of that of MG1655 strain. Please click Additional Files below to see the full abstract

    Sequential whole cell conversion process for production of D-psicose and D- mannitol from D-fructose

    Get PDF
    Rare sugars, which exist only limited quantities naturally, have received considerable attention because of its various specific nutritional and biological functions. Likewise, D-psicose (D-ribo-2-hexulose or D-allulose), a C-3 epimer of D-fructose, has many uses which include reducing intra-abdominal fat accumulation, protecting pancreas beta-islets and improving insulin sensitivity. Especially, D-psicose has only 0.3% calories compared to sucrose, while it has 70% relative sweetness. Additionally, in 2012, D-psicose was approved as a food additive and designated as Generally Recognized As Safe (GRAS) by Food and Drug Administration (FDA). Despite such abundant advantages, there is no economical way of mass production of D-psicose. Recently, biological production of D-psicose from D-fructose using D-psicose 3-epimerase (DPE) has been developed. However, the conversion yield is below 30%, which causes an undesirable increase of purification cost because of the similar solubility of D-psicose and D-fructose. Thus, we addressed the problem by converting the residual fructose, after the reaction of D-psicose production, to D-mannitol, which has a low solubility. The sequential whole cell conversion reactions for D-psicose and D-mannitol allow a convenient and economic purification of both products. This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ01106201), RDA, Korea. Reference 1) Carsten Bäumchen & Stephanie Bringer-Meyer (2007), Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum, Appl Microbiol Biotechnol 76(3):545–52. 2) Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria, Appl Microbiol Biotechnol 97:4713-4726 3) Park, Y., Oh, E. J., Jo, J., Jin, Y., & Seo, J. (2016). Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Silicon germanium photo-blocking layers for a-IGZO based industrial display

    Get PDF
    Amorphous indium- gallium-zinc oxide (a-IGZO) has been intensively studied for the application to active matrix flat-panel display because of its superior electrical and optical properties. However, the characteristics of a-IGZO were found to be very sensitive to external circumstance such as light illumination, which dramatically degrades the device performance and stability practically required for display applications. Here, we suggest the use for silicon-germanium (Si-Ge) films grown plasmaenhanced chemical vapour deposition (PECVD) as photo-blocking layers in the a-IGZO thin film transistors (TFTs). The charge mobility and threshold voltage (V-th) of the TFTs depend on the thickness of the Si-Ge films and dielectric buffer layers (SiNX), which were carefully optimized to be similar to 200 nm and similar to 300 nm, respectively. As a result, even after 1,000 s illumination time, the V-th and electron mobility of the TFTs remain unchanged, which was enabled by the photo-blocking effect of the Si-Ge layers for a-IGZO films. Considering the simple fabrication process by PECVD with outstanding scalability, we expect that this method can be widely applied to TFT devices that are sensitive to light illumination.

    Thin cell fringe-field-switching liquid crystal display with a chiral dopant

    Get PDF
    A fringe-field-switching (FFS) liquid crystal display (LCD) using a thin cell doped with a reverse-handed chiral compound is proposed. Such a FFS LCD exhibits a fast response time (similar to 8 ms), high transmittance ( \u3e 90%), low operating voltage (5 V(rms)), and intrinsically wide viewing angle. Its application for LCD televisions in order to reduce image blurring is emphasized. (C) 2008 American Institute of Physics

    Impact of Emotional Harassment on Firm’s Value

    Get PDF
    The activities and consequences of workplace bullying and harassment have been widely explored in the literature but mainly studied within the scope of individuals or at the team level. Taking a holistic approach, we associate the concept of bullying with firm-level performance as well as stakeholders’ responses in the market. In this paper, we examine whether and how market investors react to the news of corporate harassment by top officials of publicly listed firms in Korea. Using a standard event study methodology and multiple regression analysis with matched sample, we find significantly negative stock price reactions to news of corporate bullying. We also find that the impact is more salient if emotional bullying is involved and discuss both the theoretical and practical implications of these findings
    corecore