108 research outputs found

    Analysis of historical meteor and meteor shower records: Korea, China, and Japan

    Full text link
    We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C -- A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918 -- 1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392 -- 1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte-Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.Comment: 29 pages, 7 figures. To appear in Icaru

    Korean Nova Records in A.D. 1073 and A.D. 1074: R Aquarii

    Full text link
    R Aqr is known to be a symbiotic binary system with an associated extended emission nebula, possibly produced by a historic outburst. To find the associated historic records, we searched for and compiled all 'Guest Star' and 'Peculiar Star' records in three Korean 'official' history books that cover almost two thousand years, Samguksagi, Goryeosa, Joseonwangjosillok. In addition to the record of A.D. 1073, previously noted by Li (1985), we have found in Goryeosa another candidate record of A.D. 1074, which has the same positional description as that of A.D. 1073 with an additional brightness description. We examined various aspects of the two records and conclude that they both are likely to be the records of outburst of R Aqr. This means that there were two successive outbursts in A.D. 1073 and in A.D. 1074, separated by approximately one year. Based on these records, we estimate the distance to R Aqr to be 273 pc if the expansion of the nebula has been at a constant rate. The brightness record of A.D. 1074 corresponds to the absolute magnitude at outburst of M_(outburst) = -6.2 mag. ~ -5.2 mag. at this distance. The two Korean records associated with R Aqr may provide astronomically meaningful constraints to the outburst model of R Aqr and the formative process of its nebulosity.Comment: 10 pages, 2 figures, 1 appendix. To appear in Astronomy and Astrophysic

    Mass Accretion Rate of Rotating Viscous Accretion Flow

    Full text link
    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate(Mdot_B), which is determined only by the density and the temperature of gas at the outer boundary. But most work on disc accretion has taken the mass flux to be a given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous hot accretion flow and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05 ~< mdot ~< 1 when alpha=0.01 where mdot==Mdot/Mdot_B. We also find that the dimensionless mass accretion rate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, mdot ~= 9.0 alpha/lambda when 0.1 ~< mdot ~< 1, where the dimensionless angular momentum measure lambda == l_out/l_B is the specific angular momentum of gas at the outer boundary l_out in units of l_B == GM/c_{s,out}, and cs,outc_{s,out} the isothermal sound speed at the outer boundary.Comment: 15 pages, 3 figures, to appear in Ap

    The Stream-Stream Collision after the Tidal Disruption of a Star Around a Massive Black Hole

    Get PDF
    A star can be tidally disrupted around a massive black hole. It has been known that the debris forms a precessing stream, which may collide with itself. The stream collision is a key process determining the subsequent evolution of the stellar debris: if the orbital energy is efficiently dissipated, the debris will eventually form a circular disk (or torus). In this paper, we have numerically studied such stream collision resulting from the encounter between a 10^6 Msun black hole and a 1 Msun normal star with a pericenter radius of 100 Rsun. A simple treatment for radiative cooling has been adopted for both optically thick and thin regions. We have found that approximately 10 to 15% of the initial kinetic energy of the streams is converted into thermal energy during the collision. The angular momentum of the incoming stream is increased by a factor of 2 to 3, and such increase, together with the decrease in kinetic energy, significantly helps the circularization process. Initial luminosity burst due to the collision may reach as high as 10^41 erg/sec in 10^4 sec, after which the luminosity increases again (but slowly this time) to a steady value of a few 10^40 erg/sec in a few times of 10^5 sec. The radiation from the system is expected to be close to Planckian with effective temperature of \~10^5K.Comment: 19 pages including 12 figures; Accepted for publication in Ap
    • 

    corecore