76 research outputs found
Brain correlates of phasic autonomic response to acupuncture stimulation: An eventârelated fMRI study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100160/1/hbm22091.pd
Recommended from our members
Phantom Acupuncture: Dissociating Somatosensory and Cognitive/Affective Components of Acupuncture Stimulation with a Novel Form of Placebo Acupuncture
In a clinical setting, acupuncture treatment consists of multiple components including somatosensory stimulation, treatment context, and attention to needle-based procedures. In order to dissociate somatosensory versus contextual and attentional aspects of acupuncture, we devised a novel form of placebo acupuncture, a visual manipulation dubbed phantom acupuncture, which reproduces the acupuncture needling ritual without somatosensory tactile stimulation. Subjects (N = 20) received both real (REAL) and phantom (PHNT) acupuncture. Subjects were retrospectively classified into two groups based on PHNT credibility (PHNTc, who found phantom acupuncture credible; and PHNTnc, who did not). Autonomic and psychophysical responses were monitored. We found that PHNT can be delivered in a credible manner. Acupuncture needling, a complex, ritualistic somatosensory intervention, induces sympathetic activation (phasic skin conductance [SC] response), which may be specific to the somatosensory component of acupuncture. In contrast, contextual effects, such as needling credibility, are instead associated with a shift toward relative cardiovagal activation (decreased heart rate) during needling and sympathetic inhibition (decreased SC) and parasympathetic activation (decreased pupil size) following acupuncture needling. Visual stimulation characterizing the needling ritual is an important factor for phasic autonomic responses to acupuncture and may undelie the needling orienting response. Our study suggests that phantom acupuncture can be a viable sham control for acupuncture as it completely excludes the somatosensory component of real needling while maintaining the credibility of the acupuncture treatment context in many subjects
Static and Dynamic Autonomic Response with Increasing Nausea Perception
BackgroundâNausea is a commonly occurring symptom typified by epigastric discomfort with
urge to vomit. The relationship between autonomic nervous system (ANS) outflow and increasing
nausea perception is not fully understood.
MethodsâOur study employed a nauseogenic visual stimulus (horizontally translating stripes)
while 17 female subjects freely rated transitions in nausea level and autonomic outflow was
measured (heart rate, HR, heart rate variability, HRV, skin conductance response, SCR,
respiratory rate). We also adopted a recent approach to continuous high frequency (HF) HRV
estimation to evaluate dynamic cardiovagal modulation.
ResultsâHR increased from baseline for all increasing nausea transitions, especially transition
to strong nausea (15.0±11.4 bpm), but decreased (â6.6±4.6 bpm) once the visual stimulus ceased.
SCR also increased for all increasing nausea transitions, especially transition to strong nausea
(1.76±1.68 ΌS), but continued to increase (0.52 ± 0.65 ΌS) once visual stimulation ceased. LF/HF
HRV increased following transition to moderate (1.54±2.11 a.u.) and strong (2.57±3.49 a.u.)
nausea, suggesting a sympathetic shift in sympathovagal balance. However, dynamic HF HRV
suggested that bursts of cardiovagal modulation precede transitions to higher nausea, perhaps
influencing subjects to rate higher levels of nausea. No significant change in respiration rate was
found.
ConclusionsâOur results suggest that increasing nausea perception is associated with both
increased sympathetic and decreased parasympathetic ANS modulation. These findings
corroborate past ANS studies of nausea, applying percept-linked analyses and dynamic estimation
of cardiovagal modulation in response to nausea.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant R01-DA015644)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K01-AT002166)National Institutes of Health (U.S.) (Grant P01-AT002048)National Institutes of Health (U.S.) (Grant F05-AT003770)National Institutes of Health (U.S.) (Grant K23-DK069614)National Center for Research Resources (U.S.) (P41RR14075)National Center for Research Resources (U.S.) (CRC 1 UL1 RR025758-01)Mental Illness and Neuroscience Discovery (MIND) InstituteInternational Foundation of Functional Gastrointestinal DisordersInstitute of Information Technology Advancement (South Korea)Institute of Information Technology Advancement (South Korea) (Korea IITA- 2008-(C1090-0801-0002)
Recommended from our members
Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity
OBJECTIVE
Fibromyalgia (FM) is considered to be the prototypical central chronic pain syndrome and is associated with widespread pain that fluctuates spontaneously. Multiple studies have demonstrated altered brain activity in these patients. Our objective was to investigate the degree of connectivity between multiple brain networks in FM, as well as how activity in these networks correlates with spontaneous pain.
METHODS
Resting functional magnetic resonance imaging (fMRI) data in FM patients (n=18) and age-matched healthy controls (HC, n=18) were analyzed using dual regression independent component analysis (ICA) - a data driven approach used to identify independent brain networks. We evaluated intrinsic, or resting, connectivity in multiple brain networks: the default mode network (DMN), the executive attention network (EAN), and the medial visual network (MVN), with the MVN serving as a negative control. Spontaneous pain levels were also covaried with intrinsic connectivity.
RESULTS
We found that FM patients had greater connectivity within the DMN and right EAN (rEAN; p<0.05, corrected), and greater connectivity between the DMN and the insular cortex â a brain region known to process evoked pain. Furthermore, greater spontaneous pain at the time of the scan correlated with greater intrinsic connectivity between the insula and both the DMN and rEAN (p<0.05, corrected).
CONCLUSION
Our findings indicate that resting brain activity within multiple networks is associated with spontaneous clinical pain in FM. These findings may also have broader implications for how subjective experiences such as pain arise from a complex interplay amongst multiple brain networks
Reliability and Validity of Modified Algometer in Abdominal Examination
Objective. Abdominal examination (AE) is one of the essential diagnostic methods in traditional Korean medicine that has been widely used for deciding treatment, cause, and prognosis of the disease. AE majorly depends on the experience of practitioners; therefore, standardization and quantification of AE are desperately needed. However, few studies have tried to objectify AE and established its standard. We assessed the reliability and validity of newly developed diagnostic device for AE called modified algometer (MA). Methods. Thirty-six subjects with functional dyspepsia were allocated into one of 2 groups according to gold standard of AE: epigastric discomfort without tenderness (n=23) group or epigastric discomfort with tenderness (n=13) group. Pressure pain threshold was evaluated at participantsâ epigastric region with algometer and MA. We assessed reliability and validity (sensitivity and specificity) and calculated optimal cutoff value. Results. MA showed high intertrial reliability (ICC 0.849; 0.703â0.923; P<0.000) and validity (sensitivity: 76.92%; specificity: 60.87%), and cutoff value was 330.0âmmHg. Algometer and MA showed moderate correlation (r=0.583, Pâ€0.000). Conclusion. MA can be reliable and valid diagnostic device for AE and has the possibility of practical use for quantification and standardization of AE
Recommended from our members
Brain encoding of acupuncture sensation â Coupling on-line rating with fMRI
Acupuncture-induced sensations have historically been associated with clinical efficacy. These sensations are atypical, arising from sub-dermal receptors, and their neural encoding is not well known. In this fMRI study, subjects were stimulated at acupoint PC-6, while rating sensation with a custom-built, MR-compatible potentiometer. Separate runs included real (ACUP) and sham (SHAM) acupuncture, the latter characterized by non-insertive, cutaneous stimulation. FMRI data analysis was guided by the on-line rating timeseries, thereby localizing brain correlates of acupuncture sensation. Sensation ratings correlated with stimulation more (p<0.001) for SHAM (r=0.63) than for ACUP (r=0.32). ACUP induced stronger and more varied sensations with significant persistence into no-stimulation blocks, leading to more runtime spent rating low and moderate sensations compared to SHAM. ACUP sensation correlated with activation in regions associated with sensorimotor (SII, insula) and cognitive (dorsomedial prefrontal cortex (dmPFC)) processing, and deactivation in default-mode network (DMN) regions (posterior cingulate, precuneus). Compared to SHAM, ACUP yielded greater activity in both anterior and posterior dmPFC and dlPFC. In contrast, SHAM produced greater activation in sensorimotor (SI, SII, insula) and greater deactivation in DMN regions. Thus, brain encoding of ACUP sensation (more persistent and varied, leading to increased cognitive load) demonstrated greater activity in both cognitive/evaluative (posterior dmPFC) and emotional/interoceptive (anterior dmPFC) cortical regions. Increased cognitive load and dmPFC activity may be a salient component of acupuncture analgesia - sensations focus attention and accentuate bodily awareness, contributing to enhanced top-down modulation of any nociceptive afference and central pain networks. Hence, acupuncture may function as a somatosensory-guided mind-body therapy
Recommended from our members
Phantom Acupuncture Induces Placebo Credibility and Vicarious Sensations: A Parallel fMRI Study of Low Back Pain Patients
Although acupuncture is an effective therapeutic intervention for pain reduction, the exact difference between real and sham acupuncture has not been clearly understood because a somatosensory tactile component is commonly included in the existing sham acupuncture protocols. In an event-related fMRI experiment, we implemented a novel form of sham acupuncture, phantom acupuncture, that reproduces the acupuncture needling procedure without somatosensory tactile stimulation while maintaining the credibility of the acupuncture treatment context. Fifty-six non-specific low back pain patients received either real (REAL) or phantom (PHNT) acupuncture stimulation in a parallel group study. The REAL group exhibited greater activation in the posterior insula and anterior cingulate cortex, reflecting the needling-specific components of acupuncture. We demonstrated that PHNT could be delivered credibly. Interestingly, the PHNT-credible group exhibited bilateral activation in SI/SII and also reported vicarious acupuncture sensations without needling stimulation. The PHNT group showed greater activation in the bilateral dorsolateral/ventrolateral prefrontal cortex (dlPFC/vlPFC). Moreover, the PHNT group exhibited significant pain reduction, with a significant correlation between the subjective fMRI signal in the right dlPFC/vlPFC and a score assessing belief in acupuncture effectiveness. These results support an expectation-related placebo analgesic effect on subjective pain intensity ratings, possibly mediated by right prefrontal cortex activity
Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex
Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is unknown. Sixty-three subjects with carpal tunnel syndrome aged 20â60 years and 28 age- and sex-matched healthy control subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit cortical separation distance for each digitâs contralateral primary somatosensory cortex representation was assessed. We also evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary contraction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test. These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third interdigit cortical separation distance (P < 0.05) in contralateral primary somatosensory cortex, corroborating our previous preliminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome demonstrated reduced maximum voluntary contraction pinch strength (P < 0.01) and a reduced number of pinch/release cycles per second (P < 0.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demonstrated greater response time (P < 0.05), and reduced sensory discrimination accuracy (P < 0.001) for median nerve, but not ulnar nerve, innervated digits. Moreover, the second/third interdigit cortical separation distance was negatively correlated with paraesthesia severity (r = â0.31, P < 0.05), and number of pinch/release cycles (r = â0.31, P < 0.05), and positively correlated with the second and third digit sensory discrimination accuracy (r = 0.50, P < 0.05). Therefore, reduced second/third interdigit cortical separation distance in contralateral primary somatosensory cortex was associated with worse symptomatology (particularly paraesthesia), reduced fine motor skill performance, and worse sensory discrimination accuracy for median nerve innervated digits. In conclusion, primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients
- âŠ